summaryrefslogtreecommitdiff
path: root/index.html
blob: c27174b21468e951073c62a54bc2f862deedcfb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
<!DOCTYPE html>
<html>
  <head>
    <title>Triangle / Lambdoma</title>
    <meta charset="utf-8" />
    <meta
      name="viewport"
      content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no"
    />
    <style>
      html,
      body {
        margin: 0;
        padding: 0;
        overflow: hidden;
        overscroll-behavior: contain;
      }
      body {
        font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica,
          Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji",
          "Segoe UI Symbol";
        color: white;
        text-shadow: 0 0 1px #000;
        transition: background-color 100ms;
      }
      grid {
        display: block;
        width: 100vw;
        height: 100vh;
        overflow: hidden;
        user-select: none;
      }
      grid * {
        position: absolute;
        cursor: pointer;
        box-sizing: border-box;
      }
      grid > div {
        width: 50px;
        height: 50px;
      }
      grid > div > div {
        width: 20px;
      }
      grid > div > div:nth-child(1) {
        text-align: right;
        top: 5px;
        left: 3px;
      }
      grid > div > div:nth-child(2) {
        text-align: center;
        top: 15px;
        left: 16px;
        opacity: 0.8;
        transform: rotate(20deg);
      }
      grid > div > div:nth-child(3) {
        text-align: left;
        top: 29px;
        left: 28px;
      }
      grid > div.playing {
        border: 2px solid #eee;
        box-shadow: 0 1px 3px #ddd;
        z-index: 2;
      }
      grid > div.playing > div {
        margin: -2px -2px;
      }

      #message {
        position: absolute;
        bottom: 0;
        right: 0;
        padding: 0.5rem;
        text-align: right;
        pointer-events: none;
        text-shadow: 0 0 2px #000;
        font-size: 72px;
        z-index: 1234;
      }
      #help {
        position: absolute;
        top: 0;
        right: 0;
        height: 100%;
        padding: 0.5rem;
        z-index: 1001;
        transition: opacity 0.2s;
        overflow: scroll;
        opacity: 0;
        pointer-events: none;
      }
      #help.visible {
        opacity: 1;
        pointer-events: auto;
      }
      #help h1,
      #help h2 {
        margin: 0;
        padding: 0;
        margin-bottom: 0.5rem;
      }
      #help h1 {
        font-size: 24px;
      }
      #help h2 {
        font-size: 18px;
        margin-top: 1.5rem;
      }
      #help .content {
        background: rgba(0, 0, 0, 0.7);
        backdrop-filter: blur(10px);
        padding: 1rem 1rem 1rem 1.5rem;
        max-width: 600px;
        border-radius: 20px;
        box-shadow: 0 2px #000;
      }
      #help a {
        color: #fff;
      }
      #help ul {
        margin: 0;
        padding: 0;
      }
      #help li {
        margin-left: 1rem;
        padding: 0;
      }
      #help tableContainer {
        display: inline-block;
        border-radius: 8px;
      }
      #help table {
        font-size: 14px;
        padding: 0;
        margin: 0;
        border-spacing: 0;
      }
      #help table td {
        padding: 0.125rem 1rem;
        min-width: 100px;
      }
      #help table td:first-child {
        text-align: right;
        color: #ff8;
      }
      #help table tr:nth-child(even) {
        background: rgba(0, 0, 0, 0.75);
      }
      #help table tr:nth-child(odd) {
        background: rgba(0, 0, 0, 0.25);
      }
      .close {
        position: absolute;
        top: 0;
        right: 0;
        font-size: 16px;
        padding: 1rem;
        font-weight: bold;
        cursor: pointer;
        user-select: none;
      }
      super {
        font-size: 10px;
        position: relative;
        bottom: 5px;
        margin-right: -5px;
      }
      #help p {
        margin-block-start: 0;
        margin-block-end: 0.75rem;
        line-height: 1.4;
      }
      #help li {
        line-height: 1.4;
      }
      .ui-button {
        position: fixed;
        top: 0;
        right: 0;
        z-index: 12345;
        cursor: pointer;
        margin: 9px;
        width: 32px;
        height: 32px;
        display: flex;
        text-align: center;
        align-items: center;
        justify-content: center;
        display: block;
        border-radius: 50%;
        background: rgba(0, 0, 0, 0.25);
        backdrop-filter: blur(20px);
        transition: background 0.1s;
        line-height: 0;
        box-shadow: 0px 1px 2px rgba(0, 0, 0, 0.5);
      }
      .ui-button:hover {
        background: rgba(0, 0, 0, 0.5);
      }
      .ui-button span {
        display: flex;
        flex: 1;
        justify-content: center;
        align-items: center;
        font-weight: bold;
        font-size: 20px;
        height: 100%;
      }
      .ui-button svg {
        width: 24px;
        height: 24px;
      }
      .ui-button svg path {
        filter: drop-shadow(0px 0.75px 1px rgb(0 0 0 / 0.4));
      }
      .ui-button .bandpass path {
        stroke: white;
        stroke-width: 1.5px;
        stroke-linecap: round;
      }
      .ui-button .sine path {
        stroke: white;
        stroke-width: 20px;
      }

      #help-button {
        top: 0;
      }

      #modus {
        top: 50px;
      }
      #modus .bandpass,
      #modus .sine {
        position: absolute;
        top: 4px;
        left: 4px;
        opacity: 0;
        transition: opacity 0.1s ease-out;
      }
      #modus .visible {
        opacity: 1;
      }

      #root {
        top: 100px;
      }
      #root span {
        font-weight: normal;
        font-size: 14px;
      }

      .mode {
        cursor: pointer;
      }

      /**
       * Root select
       */
      .root-select {
        position: fixed;
        top: 1rem;
        right: 50px;
        z-index: 1234;
        display: flex;
        align-items: flex-start;
        justify-content: flex-end;
        opacity: 0;
        pointer-events: none;
        transition: opacity 0.2s;
        background: rgba(255, 255, 255, 0.1);
        cursor: pointer;
      }
      .root-select.visible {
        opacity: 1;
        pointer-events: auto;
      }
      .root-select > div {
        display: flex;
        flex-direction: row-reverse;
        align-items: center;
        justify-content: center;
        text-align: center;
        line-height: 1.75;
        background: rgba(0, 0, 0, 0.75);
        border-radius: 20px;
        padding: 1rem 0.5rem 0 0.5rem;
        backdrop-filter: blur(6px);
        box-shadow: 0 1px 2px rgba(0, 0, 0, 0.5);
      }
      .root-select .row {
        display: flex;
        flex-direction: column;
        margin-right: 0.25rem;
        margin-left: 0.25rem;
        margin-bottom: 0.5rem;
      }
      .root-select .row.klavier {
        display: flex;
        flex-direction: row-reverse;
        align-items: center;
        justify-content: center;
      }
      .root-select .row.form-row {
        flex-direction: row;
      }
      .root-select .hidden {
        opacity: 0;
        pointer-events: none;
      }
      .root-select input {
        font-size: 18px;
        width: 74px;
        height: 48px;
        font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica,
          Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji",
          "Segoe UI Symbol";
        padding: 0;
        margin: 0;
        border: 2px solid;
        margin-right: 0.25rem;
        text-align: center;
        border-radius: 32px;
      }
      .root-input {
        display: inline-block;
        position: relative;
        padding-bottom: 0.25rem;
      }
      .root-select button {
        font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica,
          Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji",
          "Segoe UI Symbol";
        color: white;
        font-size: 18px;
        background: rgba(16, 16, 16, 0.85);
        border: 0;
        min-width: 50px;
        height: 50px;
        margin-bottom: 0.25rem;
        cursor: pointer;
        border-radius: 32px;
        transition: opacity 0.1s;
        opacity: 0.9;
        display: inline-flex;
        flex-direction: row;
        justify-content: center;
        align-items: center;
        text-shadow: 0 0 2px #000, 0 0 1px #000;
        box-shadow: 0 1px 2px rgba(0, 0, 0, 0.75);
      }
      .root-select button:hover {
        opacity: 1;
      }
      .root-select button.ok {
        width: 78px;
      }
      .klavier button {
        text-shadow: 0 0 1px #000, 0 0 1px #000;
      }

      .fraction {
        display: inline-flex;
        flex-direction: column;
        font-size: 12px;
        margin-left: 0.25rem;
      }
      .fraction span:first-child {
        border-bottom: 1px solid;
      }

      @media (max-width: 800px) {
        .root-select {
          align-items: flex-start;
          background: rgba(0, 0, 0, 0.5);
          top: 0;
          right: 0;
          width: 100%;
          height: 100%;
        }
        .root-select > div {
          background: rgba(0, 0, 0, 0);
          margin: 0;
          width: 100%;
          height: 100%;
          align-items: center;
          justify-content: center;
          border-radius: 0;
        }
        .root-select .row.form-row {
          flex-direction: column;
        }
      }
    </style>
  </head>
  <body>
    <div id="message"></div>
    <div id="help">
      <div class="content">
        <h1>Triangle / Lambdoma</h1>

        <p>
          This page is a musical instrument made up of a grid of just intonation
          intervals, all based on a root frequency.
        </p>

        <p>
          The rows display the <b>overtone series</b> (1/1, 2/1, 3/1 ...). The
          columns follow its inverse, the <b>undertone series</b> (1/1, 1/2,
          1/3, ...). Multiplying everything out, the resulting intervals contain
          an inherent music arising from simple, whole-number ratios.
        </p>

        <p>
          <b>Color</b> indicates position in the octave, with red being the root
          or unison interval 1/1. <b>Brightness</b> indicates octave, with white
          and black tending toward the extremes of human hearing.
        </p>

        <ul>
          <li>
            The default instrument is a Hokema sansula, a type of kalimba.
          </li>
          <li>
            Right-click notes to turn on sine waves matching the interval.
          </li>
          <li>
            Resonator mode puts white noise through tuned bandpass filters.
          </li>
          <li>
            Drag-and-drop samples into the window to play with your own sounds.
          </li>
        </ul>

        <h2>keyboard shortcuts</h2>
        <tableContainer
          ><table>
            <tr>
              <td>ESC</td>
              <td>Stop all sound</td>
            </tr>
            <tr>
              <td>ESC ESC</td>
              <td>Return to home position</td>
            </tr>
            <tr>
              <td>?</td>
              <td>Show this help</td>
            </tr>
            <tr>
              <td>+ -</td>
              <td>Change scale</td>
            </tr>
            <tr>
              <td>up<br />down<br />left<br />right</td>
              <td>Scroll the grid</td>
            </tr>
            <tr>
              <td>0-9 a-z</td>
              <td>Keyboard mapped to the top-left 8x8 grid, sorted by pitch</td>
            </tr>
            <tr>
              <td>~</td>
              <td>Toggle sine and resonator mode</td>
            </tr>
            <tr>
              <td>\</td>
              <td>Detect MIDI device (listening on channel 1)</td>
            </tr>
            <tr>
              <td>⌘ +<br />⌘ -</td>
              <td>Change scale root by +/- 1 hz</td>
            </tr>
            <tr>
              <td>⌘⇧ +<br />⌘⇧ -</td>
              <td>Change scale root by +/- 10 hz</td>
            </tr>
            <tr>
              <td>⌘ up<br />⌘⇧ up<br />⌘⇧⌃ up</td>
              <td>Change pitch of sampler by +10 / +1 / -0.1 hz</td>
            </tr>
            <tr>
              <td>⌘ down<br />⌘⇧ down<br />⌘⇧⌃ down</td>
              <td>Change pitch of sampler by -10 / -1 / -0.1 hz</td>
            </tr>
          </table>
        </tableContainer>

        <h2>scales</h2>

        <p>Alternate scales are accessed by pressing the +/- keys.</p>

        <tableContainer>
          <table>
            <tr>
              <td class="mode" name="natural">natural</td>
              <td>Natural numbers: 1, 2, 3 ...</td>
            </tr>
            <tr>
              <td class="mode" name="undertone">undertone</td>
              <td>Subharmonic intervals under the line 1/1</td>
            </tr>
            <tr>
              <td class="mode" name="overtone">overtone</td>
              <td>Harmonic intervals above the line 1/1</td>
            </tr>
            <tr>
              <td class="mode" name="primes">primes</td>
              <td>Prime numbers only (most dissonant)</td>
            </tr>
            <tr>
              <td class="mode" name="arithmetic">arithmetic</td>
              <td>Multiply all cells by an interval rather than scrolling</td>
            </tr>
            <!--
            <tr>
              <td>equal</td>
              <td>Equal-tempered intervals based on 1:<super>n</super>√2</td>
            </tr>
            -->
            <tr>
              <td class="mode" name="hyperbolic">hyperbolic</td>
              <td>
                Change stride rather than scrolling. Denominator magnifies along
                the 1/1 line, numerator emphasizes the hyperbolic extremes.
              </td>
            </tr>
            <tr>
              <td class="mode" name="collatz">Collatz</td>
              <td>
                <a
                  href="https://en.wikipedia.org/wiki/Collatz_conjecture"
                  target="_blank"
                  >Hailstone numbers</a
                >
                of Lothar Collatz
              </td>
            </tr>
            <tr>
              <td class="mode" name="pythagorean">Pythagorean</td>
              <td>
                <a
                  href="https://en.wikipedia.org/wiki/Pythagorean_interval"
                  target="_blank"
                  >Pythagorean intervals</a
                >
                where each ratio is a power of 2<super>n</super> or 3<super
                  >n</super
                >
              </td>
            </tr>
          </table>
        </tableContainer>

        <h2>about this page</h2>

        <p>
          This webpage was inspired in part by
          <a href="https://www.youtube.com/watch?v=4pdSYkI86go"
            >Peter Neubäcker</a
          >, inventor of the Melodyne software. In the short biographical
          documentary <i>Wie klingt ein Stein?</i> (<i
            >What does a stone sound like?</i
          >), Neubäcker describes the basic principles of harmonic intervals. He
          first demonstrates how one plays harmonics on a monochord. He then
          shows it next to a grid of whole-number ratios, and demonstrates how
          one can use these ratios to find specific intervals. I had never seen
          just intonation demonstrated so elegantly, so I made this page to
          explore the concept.
        </p>

        <p>
          I later learned that I had constructed the "lambdoid diagram" or
          <b>Lambdoma</b>, named for its resemblance to the Greek letter
          <i>Lambda</i> Λ. The synergy of color and tone, linking the octave to
          the color wheel, seemed intuitive, and revealed a beautiful pattern,
          both visual and musical. This pattern had previously been uncovered by
          artist and sound practitioner
          <a href="https://www.lambdoma.com/">Barbara Hero</a>, who built an 8x8
          electronic Lambdoma instrument for sound healing purposes, using the
          same pattern of colors.
        </p>

        <p>
          Hero learned of the Lambdoma from
          <i>Tone: A Study in Musical Acoustics</i> (1968) by
          <a
            href="https://archive.org/details/tonestudyinmusic0000leva/page/n5/mode/2up"
            >Levarie and Levy</a
          >, who trace the Lambdoma back to Pythagoras (ca. 500 BCE) by way of
          the <i>Introduction to Arithmetic</i> by
          <a
            href="https://archive.org/details/nicomachus-introduction-to-arithmetic/page/191/mode/1up"
            >Nicomachus of Gerasa</a
          >
          (ca. 100 BCE) and the <i>Theologumena arithmeticae</i> of
          <a
            href="https://archive.org/details/astius-theologumena-arithmeticae-gr-1817/page/159/mode/1up"
            >Iamblichus</a
          >
          (ca. 300 CE). The Lambdoma is also mentioned by
          <a
            href="https://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A2008.01.0385%3Astephpage%3D1027b"
            >Plutarch</a
          >
          (ca. 100 CE) in his commentary on Plato's <i>Timaeus</i>. It was
          <a
            href="https://archive.org/details/bsb10527783/page/137/mode/1up"
            target="_blank"
            >depicted</a
          >
          in the 19th century by Albert von Thimus in the neo-Pythagorean
          treatise
          <i>Die harmonikale Symbolik des Alterthums</i> (1876) which connects
          musical intervals to other harmonic relationships in nature. The
          Lambdoma was also used by mathematician Georg Cantor in his theory of
          transfinite sets (see below). More information can be gleaned from
          Hero's
          <a
            href="https://lambdoma.com/pdfs/the-lambdoma-matrix-and-harmonic-intervals.pdf"
            target="_blank"
            >paper</a
          >, <i>The Lambdoma Matrix and Harmonic Intervals</i> (1999).
        </p>

        <h2>the music of whole numbers</h2>

        <p>
          The smallest whole numbers have the greatest significance to our
          understanding of music. With the root, fifth, fourth, and octave in
          the top-left corner, the Lambdoma shows how the 3:2 proportion is the
          foundation of tonality. These frequencies sound quite similar to each
          other, which as any musician knows, can sometimes fool the ear.
        </p>

        <p>
          The next prime number interval, 5:4, is a just major third, and its
          inverse, 4:5 is a minor third. Thus the overtone series sounds
          "major", and the undertone series sounds "minor". The next prime
          number out, 7, extends the minor to diminished, and major to dominant.
        </p>

        <p>
          At this point, we have just enough notes to form a fairly melodious
          just-intonated scale, which you can play using your computer keyboard.
          Within a just-intonated tuning system, each interval can sound highly
          distinctive, since the notes are not distributed evenly across the
          octave.
        </p>

        <h2>tuning systems</h2>

        <p>
          The musical Circle of Fifths, created by repeatedly multiplying a
          frequency by 3:2, can be studied in more detail in this program's
          <u class="mode" name="pythagorean">Pythagorean</u> setting, where each
          ratio is a power of 2 or 3. Powers of 3 move by fifths, and powers of
          2 by octaves. Using this principle, we can transpose any note back
          down into the same octave and create a scale.
        </p>

        <p>
          On this instrument, similar notes can be found by color and compared.
          One can easily hear how stacking fifths does not bring you back to the
          starting note: find two far-apart red notes of the same brightness,
          and play both at once. These two frequencies are not quite the same,
          and they will audibly vibrate or "beat" against each other.
        </p>

        <p>
          The interval between this pseudo-unison is known as the
          <i>ditonic comma</i>, and it is one of various "commas" that tuning
          systems adjust for. Another important comma is the
          <i>syntonic comma</i>, which is the difference between a just major
          third (5:4) and the closest equivalent achieved from stacking fifths.
        </p>

        <p>
          In a sense, 12-tone equal temperament "bends" all of the notes to make
          the intervals evenly spaced. Fifths in equal temperament are all
          nearly in tune, making it easy to modulate between keys. By
          comparison, thirds are quite out of tune compared to a just major
          third (5:4). An alternative is meantone temperament, which favors
          harmonious major thirds over out-of-tune fifths, by distributing the
          comma differently.
        </p>

        <h2>tone and transfinite sets</h2>

        <p>
          Intervals in just intonation are rational numbers, composed of a
          numerator and denominator that are both whole numbers. Notes in equal
          temperament, however, are separated by a semitone of 1 to the 12th
          root of 2 (1:<super>12</super>√2), an irrational number, and can only
          be approximated by rationals. While all rational numbers are real
          numbers, not all real numbers are rational, and true equal-tempered
          invervals are only <i>approximated</i> by the intervals of the
          Lambdoma.
        </p>

        <p>
          In the Lambdoma, Barbara Hero also sees the image of Georg Cantor's
          transfinite set of rational numbers ℚ, which Cantor proved
          <i>countably</i>
          infinite. Consider that although there are infinitely many natural
          numbers, each of these numbers is by definition finite, and we may
          count up to it by starting from 1 and adding 1 repeatedly. Similarly,
          we can count the cells in a Lambdoma by starting from 1:1 and moving
          outward diagonally in a snake-like pattern, thus mapping the rationals
          to the natural numbers. Though there are infinitely many rational
          numbers, by their nature they are discrete, countable, and not
          completely dense. Between any two rational numbers, there lies an
          uncountable continuity of irrational real numbers in ℝ.
        </p>

        <h2>thank you!</h2>

        <p>
          Sansula samples by Freesound user
          <a
            href="https://freesound.org/people/cabled_mess/packs/21410/"
            target="_blank"
            >cabled_mess</a
          >. Gradient algorithm via
          <a href="https://iquilezles.org/articles/palettes/">Inigo Quizeles</a
          >. Thanks to
          <a href="https://www.nyz.recycled-plastics.net/" target="_blank"
            >Dave Noyze</a
          >
          for telling me about
          <a href="https://www.lambdoma.com/" target="_blank">Barbara Hero</a>.
          Thanks to <a href="https://hems.io/" target="_blank">Hems</a> for the
          support!
        </p>

        <p>Jules LaPlace / <a href="/">asdf.us</a> / 2017-2025</p>
      </div>
      <br />
    </div>
    <div class="ui-button" id="help-button"><span>?</span></div>
    <div class="ui-button" id="modus">
      <svg viewBox="0 0 24 24" class="bandpass">
        <path d="M5 5h3m4 0h9" />
        <path d="M3 10h11m4 0h1" />
        <path d="M5 15h5m4 0h7" />
        <path d="M3 20h9m4 0h3" />
      </svg>

      <svg viewBox="0 0 256 256" class="sine visible">
        <path
          d="M24,128c104-224,104,224,208,0"
          fill="none"
          stroke="#000"
          stroke-linecap="round"
          stroke-linejoin="round"
          stroke-width="8"
        />
      </svg>
    </div>
    <div class="ui-button" id="root">
      <span>440</span>
    </div>

    <div class="root-select">
      <div>
        <div class="row form-row">
          <div class="root-input">
            <input type="number" min="1" max="1000000" value="440" />
          </div>
          <button class="ok">OK</button>
        </div>
        <div class="row">
          <button class="add-10">+10</button>
          <button class="add-1">+1</button>
          <button class="sub-1">-1</button>
          <button class="sub-10">-10</button>
        </div>
        <div class="row">
          <button class="mul-2">×2</button>
          <button class="mul-3-2">
            ×<span class="fraction"><span>3</span><span>2</span></span>
          </button>
          <button class="div-3-2">
            ÷<span class="fraction"><span>3</span><span>2</span></span>
          </button>
          <button class="div-2">÷2</button>
        </div>
        <div class="row klavier">
          <div class="row">
            <button class="note-db">D♭</button>
            <button class="note-eb">E♭</button>
            <button class="hidden"></button>
            <button class="note-gb">G♭</button>
            <button class="note-ab">A♭</button>
            <button class="note-bb">B♭</button>
          </div>
          <div class="row">
            <button class="note-c">C</button>
            <button class="note-d">D</button>
            <button class="note-e">E</button>
            <button class="note-f">F</button>
            <button class="note-g">G</button>
            <button class="note-a">A</button>
            <button class="note-b">B</button>
            <button class="note-c2">C</button>
          </div>
        </div>
      </div>
    </div>
  </body>
  <script src="bundle.js"></script>
</html>