1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
import matplotlib
matplotlib.use('Agg')
from model import Generator
import torch
from torch.autograd import Variable
from torch.utils.trainer.plugins.plugin import Plugin
from torch.utils.trainer.plugins.monitor import Monitor
from torch.utils.trainer.plugins import LossMonitor
from librosa.output import write_wav
from matplotlib import pyplot
from glob import glob
import os
import pickle
import time
class TrainingLossMonitor(LossMonitor):
stat_name = 'training_loss'
class ValidationPlugin(Plugin):
def __init__(self, val_dataset, test_dataset):
super().__init__([(1, 'epoch')])
self.val_dataset = val_dataset
self.test_dataset = test_dataset
def register(self, trainer):
self.trainer = trainer
val_stats = self.trainer.stats.setdefault('validation_loss', {})
val_stats['log_epoch_fields'] = ['{last:.4f}']
test_stats = self.trainer.stats.setdefault('test_loss', {})
test_stats['log_epoch_fields'] = ['{last:.4f}']
def epoch(self, idx):
self.trainer.model.eval()
val_stats = self.trainer.stats.setdefault('validation_loss', {})
val_stats['last'] = self._evaluate(self.val_dataset)
test_stats = self.trainer.stats.setdefault('test_loss', {})
test_stats['last'] = self._evaluate(self.test_dataset)
self.trainer.model.train()
def _evaluate(self, dataset):
loss_sum = 0
n_examples = 0
for data in dataset:
batch_inputs = data[: -1]
batch_target = data[-1]
batch_size = batch_target.size()[0]
def wrap(input):
if torch.is_tensor(input):
input = Variable(input, volatile=True)
if self.trainer.cuda:
input = input.cuda()
return input
batch_inputs = list(map(wrap, batch_inputs))
batch_target = Variable(batch_target, volatile=True)
if self.trainer.cuda:
batch_target = batch_target.cuda()
batch_output = self.trainer.model(*batch_inputs)
loss_sum += self.trainer.criterion(batch_output, batch_target) \
.data[0] * batch_size
n_examples += batch_size
return loss_sum / n_examples
class AbsoluteTimeMonitor(Monitor):
stat_name = 'time'
def __init__(self, *args, **kwargs):
kwargs.setdefault('unit', 's')
kwargs.setdefault('precision', 0)
kwargs.setdefault('running_average', False)
kwargs.setdefault('epoch_average', False)
super(AbsoluteTimeMonitor, self).__init__(*args, **kwargs)
self.start_time = None
def _get_value(self, *args):
if self.start_time is None:
self.start_time = time.time()
return time.time() - self.start_time
class SaverPlugin(Plugin):
last_pattern = 'ep{}-it{}'
best_pattern = 'best-ep{}-it{}'
def __init__(self, checkpoints_path, keep_old_checkpoints):
super().__init__([(1, 'epoch')])
self.checkpoints_path = checkpoints_path
self.keep_old_checkpoints = keep_old_checkpoints
self._best_val_loss = float('+inf')
def register(self, trainer):
self.trainer = trainer
def epoch(self, epoch_index):
if not self.keep_old_checkpoints:
self._clear(self.last_pattern.format('*', '*'))
torch.save(
self.trainer.model.state_dict(),
os.path.join(
self.checkpoints_path,
self.last_pattern.format(epoch_index, self.trainer.iterations)
)
)
cur_val_loss = self.trainer.stats['validation_loss']['last']
if cur_val_loss < self._best_val_loss:
self._clear(self.best_pattern.format('*', '*'))
torch.save(
self.trainer.model.state_dict(),
os.path.join(
self.checkpoints_path,
self.best_pattern.format(
epoch_index, self.trainer.iterations
)
)
)
self._best_val_loss = cur_val_loss
def _clear(self, pattern):
pattern = os.path.join(self.checkpoints_path, pattern)
for file_name in glob(pattern):
os.remove(file_name)
class GeneratorPlugin(Plugin):
pattern = 'ep{}-s{}.wav'
def __init__(self, samples_path, n_samples, sample_length, sample_rate):
super().__init__([(1, 'epoch')])
self.samples_path = samples_path
self.n_samples = n_samples
self.sample_length = sample_length
self.sample_rate = sample_rate
def register(self, trainer):
self.generate = Generator(trainer.model.model, trainer.cuda)
def epoch(self, epoch_index):
samples = self.generate(self.n_samples, self.sample_length) \
.cpu().float().numpy()
for i in range(self.n_samples):
write_wav(
os.path.join(
self.samples_path, self.pattern.format(epoch_index, i + 1)
),
samples[i, :], sr=self.sample_rate, norm=True
)
class StatsPlugin(Plugin):
data_file_name = 'stats.pkl'
plot_pattern = '{}.svg'
def __init__(self, results_path, iteration_fields, epoch_fields, plots):
super().__init__([(1, 'iteration'), (1, 'epoch')])
self.results_path = results_path
self.iteration_fields = self._fields_to_pairs(iteration_fields)
self.epoch_fields = self._fields_to_pairs(epoch_fields)
self.plots = plots
self.data = {
'iterations': {
field: []
for field in self.iteration_fields + [('iteration', 'last')]
},
'epochs': {
field: []
for field in self.epoch_fields + [('iteration', 'last')]
}
}
def register(self, trainer):
self.trainer = trainer
def iteration(self, *args):
for (field, stat) in self.iteration_fields:
self.data['iterations'][field, stat].append(
self.trainer.stats[field][stat]
)
self.data['iterations']['iteration', 'last'].append(
self.trainer.iterations
)
def epoch(self, epoch_index):
for (field, stat) in self.epoch_fields:
self.data['epochs'][field, stat].append(
self.trainer.stats[field][stat]
)
self.data['epochs']['iteration', 'last'].append(
self.trainer.iterations
)
data_file_path = os.path.join(self.results_path, self.data_file_name)
with open(data_file_path, 'wb') as f:
pickle.dump(self.data, f)
for (name, info) in self.plots.items():
x_field = self._field_to_pair(info['x'])
try:
y_fields = info['ys']
except KeyError:
y_fields = [info['y']]
labels = list(map(
lambda x: ' '.join(x) if type(x) is tuple else x,
y_fields
))
y_fields = self._fields_to_pairs(y_fields)
try:
formats = info['formats']
except KeyError:
formats = [''] * len(y_fields)
pyplot.gcf().clear()
for (y_field, format, label) in zip(y_fields, formats, labels):
if y_field in self.iteration_fields:
part_name = 'iterations'
else:
part_name = 'epochs'
xs = self.data[part_name][x_field]
ys = self.data[part_name][y_field]
pyplot.plot(xs, ys, format, label=label)
if 'log_y' in info and info['log_y']:
pyplot.yscale('log')
pyplot.legend()
pyplot.savefig(
os.path.join(self.results_path, self.plot_pattern.format(name))
)
@staticmethod
def _field_to_pair(field):
if type(field) is tuple:
return field
else:
return (field, 'last')
@classmethod
def _fields_to_pairs(cls, fields):
return list(map(cls._field_to_pair, fields))
class CometPlugin(Plugin):
def __init__(self, experiment, fields):
super().__init__([(1, 'epoch')])
self.experiment = experiment
self.fields = [
field if type(field) is tuple else (field, 'last')
for field in fields
]
def register(self, trainer):
self.trainer = trainer
def epoch(self, epoch_index):
for (field, stat) in self.fields:
self.experiment.log_metric(field, self.trainer.stats[field][stat])
self.experiment.log_epoch_end(epoch_index)
|