summaryrefslogtreecommitdiff
path: root/nn.py
blob: db47414907fce7169dd7d967a8668fc91bcd88f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
from torch import nn

import math


class LearnedUpsampling1d(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size, bias=True):
        super().__init__()

        self.conv_t = nn.ConvTranspose1d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=kernel_size,
            bias=False
        )

        if bias:
            self.bias = nn.Parameter(
                torch.FloatTensor(out_channels, kernel_size)
            )
        else:
            self.register_parameter('bias', None)

        self.reset_parameters()

    def reset_parameters(self):
        self.conv_t.reset_parameters()
        nn.init.constant(self.bias, 0)

    def forward(self, input):
        (batch_size, _, length) = input.size()
        (kernel_size,) = self.conv_t.kernel_size
        bias = self.bias.unsqueeze(0).unsqueeze(2).expand(
            batch_size, self.conv_t.out_channels,
            length, kernel_size
        ).contiguous().view(
            batch_size, self.conv_t.out_channels,
            length * kernel_size
        )
        return self.conv_t(input) + bias


def lecun_uniform(tensor):
    fan_in = nn.init._calculate_correct_fan(tensor, 'fan_in')
    nn.init.uniform(tensor, -math.sqrt(3 / fan_in), math.sqrt(3 / fan_in))


def concat_init(tensor, inits):
    try:
        tensor = tensor.data
    except AttributeError:
        pass

    (length, fan_out) = tensor.size()
    fan_in = length // len(inits)

    chunk = tensor.new(fan_in, fan_out)
    for (i, init) in enumerate(inits):
        init(chunk)
        tensor[i * fan_in : (i + 1) * fan_in, :] = chunk


def sequence_nll_loss_bits(input, target, *args, **kwargs):
    (_, _, n_classes) = input.size()
    return nn.functional.nll_loss(
        input.view(-1, n_classes), target.view(-1), *args, **kwargs
    ) * math.log(math.e, 2)