summaryrefslogtreecommitdiff
path: root/model.py
blob: 62999c9c919ea4c7ea52cd3078887652eaf2778c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import nn
import utils

import torch
from torch.nn import functional as F
from torch.nn import init

import numpy as np


class SampleRNN(torch.nn.Module):

    def __init__(self, frame_sizes, n_rnn, dim, learn_h0, q_levels,
                 weight_norm):
        super().__init__()

        self.dim = dim
        self.q_levels = q_levels

        ns_frame_samples = map(int, np.cumprod(frame_sizes))
        self.frame_level_rnns = torch.nn.ModuleList([
            FrameLevelRNN(
                frame_size, n_frame_samples, n_rnn, dim, learn_h0, weight_norm
            )
            for (frame_size, n_frame_samples) in zip(
                frame_sizes, ns_frame_samples
            )
        ])

        self.sample_level_mlp = SampleLevelMLP(
            frame_sizes[0], dim, q_levels, weight_norm
        )

    @property
    def lookback(self):
        return self.frame_level_rnns[-1].n_frame_samples


class FrameLevelRNN(torch.nn.Module):

    def __init__(self, frame_size, n_frame_samples, n_rnn, dim,
                 learn_h0, weight_norm):
        super().__init__()

        self.frame_size = frame_size
        self.n_frame_samples = n_frame_samples
        self.dim = dim

        h0 = torch.zeros(n_rnn, dim)
        if learn_h0:
            self.h0 = torch.nn.Parameter(h0)
        else:
            self.register_buffer('h0', torch.autograd.Variable(h0))

        self.input_expand = torch.nn.Conv1d(
            in_channels=n_frame_samples,
            out_channels=dim,
            kernel_size=1
        )
        init.kaiming_uniform(self.input_expand.weight)
        init.constant(self.input_expand.bias, 0)
        if weight_norm:
            self.input_expand = torch.nn.utils.weight_norm(self.input_expand)

        self.rnn = torch.nn.GRU(
            input_size=dim,
            hidden_size=dim,
            num_layers=n_rnn,
            batch_first=True
        )
        for i in range(n_rnn):
            nn.concat_init(
                getattr(self.rnn, 'weight_ih_l{}'.format(i)),
                [nn.lecun_uniform, nn.lecun_uniform, nn.lecun_uniform]
            )
            init.constant(getattr(self.rnn, 'bias_ih_l{}'.format(i)), 0)

            nn.concat_init(
                getattr(self.rnn, 'weight_hh_l{}'.format(i)),
                [nn.lecun_uniform, nn.lecun_uniform, init.orthogonal]
            )
            init.constant(getattr(self.rnn, 'bias_hh_l{}'.format(i)), 0)

        self.upsampling = nn.LearnedUpsampling1d(
            in_channels=dim,
            out_channels=dim,
            kernel_size=frame_size
        )
        init.uniform(
            self.upsampling.conv_t.weight, -np.sqrt(6 / dim), np.sqrt(6 / dim)
        )
        init.constant(self.upsampling.bias, 0)
        if weight_norm:
            self.upsampling.conv_t = torch.nn.utils.weight_norm(
                self.upsampling.conv_t
            )

    def forward(self, prev_samples, upper_tier_conditioning, hidden):
        (batch_size, _, _) = prev_samples.size()

        input = self.input_expand(
          prev_samples.permute(0, 2, 1)
        ).permute(0, 2, 1)
        if upper_tier_conditioning is not None:
            input += upper_tier_conditioning

        reset = hidden is None

        if hidden is None:
            (n_rnn, _) = self.h0.size()
            hidden = self.h0.unsqueeze(1) \
                            .expand(n_rnn, batch_size, self.dim) \
                            .contiguous()

        (output, hidden) = self.rnn(input, hidden)

        output = self.upsampling(
            output.permute(0, 2, 1)
        ).permute(0, 2, 1)
        return (output, hidden)


class SampleLevelMLP(torch.nn.Module):

    def __init__(self, frame_size, dim, q_levels, weight_norm):
        super().__init__()

        self.q_levels = q_levels

        self.embedding = torch.nn.Embedding(
            self.q_levels,
            self.q_levels
        )

        self.input = torch.nn.Conv1d(
            in_channels=q_levels,
            out_channels=dim,
            kernel_size=frame_size,
            bias=False
        )
        init.kaiming_uniform(self.input.weight)
        if weight_norm:
            self.input = torch.nn.utils.weight_norm(self.input)

        self.hidden = torch.nn.Conv1d(
            in_channels=dim,
            out_channels=dim,
            kernel_size=1
        )
        init.kaiming_uniform(self.hidden.weight)
        init.constant(self.hidden.bias, 0)
        if weight_norm:
            self.hidden = torch.nn.utils.weight_norm(self.hidden)

        self.output = torch.nn.Conv1d(
            in_channels=dim,
            out_channels=q_levels,
            kernel_size=1
        )
        nn.lecun_uniform(self.output.weight)
        init.constant(self.output.bias, 0)
        if weight_norm:
            self.output = torch.nn.utils.weight_norm(self.output)

    def forward(self, prev_samples, upper_tier_conditioning):
        (batch_size, _, _) = upper_tier_conditioning.size()

        prev_samples = self.embedding(
            prev_samples.contiguous().view(-1)
        ).view(
            batch_size, -1, self.q_levels
        )

        prev_samples = prev_samples.permute(0, 2, 1)
        upper_tier_conditioning = upper_tier_conditioning.permute(0, 2, 1)

        x = F.relu(self.input(prev_samples) + upper_tier_conditioning)
        x = F.relu(self.hidden(x))
        x = self.output(x).permute(0, 2, 1).contiguous()

        return F.log_softmax(x.view(-1, self.q_levels)) \
                .view(batch_size, -1, self.q_levels)


class Runner:

    def __init__(self, model):
        super().__init__()
        self.model = model
        self.reset_hidden_states()

    def reset_hidden_states(self):
        self.hidden_states = {rnn: None for rnn in self.model.frame_level_rnns}

    def run_rnn(self, rnn, prev_samples, upper_tier_conditioning):
        (output, new_hidden) = rnn(
            prev_samples, upper_tier_conditioning, self.hidden_states[rnn]
        )
        self.hidden_states[rnn] = new_hidden.detach()
        return output


class Predictor(Runner, torch.nn.Module):

    def __init__(self, model):
        super().__init__(model)

    def forward(self, input_sequences, reset):
        if reset:
            self.reset_hidden_states()

        (batch_size, _) = input_sequences.size()

        upper_tier_conditioning = None
        for rnn in reversed(self.model.frame_level_rnns):
            from_index = self.model.lookback - rnn.n_frame_samples
            to_index = -rnn.n_frame_samples + 1
            prev_samples = 2 * utils.linear_dequantize(
                input_sequences[:, from_index : to_index],
                self.model.q_levels
            )
            prev_samples = prev_samples.contiguous().view(
                batch_size, -1, rnn.n_frame_samples
            )

            upper_tier_conditioning = self.run_rnn(
                rnn, prev_samples, upper_tier_conditioning
            )

        bottom_frame_size = self.model.frame_level_rnns[0].frame_size
        mlp_input_sequences = input_sequences \
            [:, self.model.lookback - bottom_frame_size :]

        return self.model.sample_level_mlp(
            mlp_input_sequences, upper_tier_conditioning
        )


class Generator(Runner):

    def __init__(self, model, cuda=False):
        super().__init__(model)
        self.cuda = cuda

    def __call__(self, n_seqs, seq_len):
        # generation doesn't work with CUDNN for some reason
        torch.backends.cudnn.enabled = False

        self.reset_hidden_states()

        bottom_frame_size = self.model.frame_level_rnns[0].n_frame_samples
        sequences = torch.LongTensor(n_seqs, self.model.lookback + seq_len) \
                         .fill_(utils.q_zero(self.model.q_levels))
        frame_level_outputs = [None for _ in self.model.frame_level_rnns]

        for i in range(self.model.lookback, self.model.lookback + seq_len):
            for (tier_index, rnn) in \
                    reversed(list(enumerate(self.model.frame_level_rnns))):
                if i % rnn.n_frame_samples != 0:
                    continue

                prev_samples = torch.autograd.Variable(
                    2 * utils.linear_dequantize(
                        sequences[:, i - rnn.n_frame_samples : i],
                        self.model.q_levels
                    ).unsqueeze(1),
                    volatile=True
                )
                if self.cuda:
                    prev_samples = prev_samples.cuda()

                if tier_index == len(self.model.frame_level_rnns) - 1:
                    upper_tier_conditioning = None
                else:
                    frame_index = (i // rnn.n_frame_samples) % \
                        self.model.frame_level_rnns[tier_index + 1].frame_size
                    upper_tier_conditioning = \
                        frame_level_outputs[tier_index + 1][:, frame_index, :] \
                                           .unsqueeze(1)

                frame_level_outputs[tier_index] = self.run_rnn(
                    rnn, prev_samples, upper_tier_conditioning
                )

            prev_samples = torch.autograd.Variable(
                sequences[:, i - bottom_frame_size : i],
                volatile=True
            )
            if self.cuda:
                prev_samples = prev_samples.cuda()
            upper_tier_conditioning = \
                frame_level_outputs[0][:, i % bottom_frame_size, :] \
                                      .unsqueeze(1)
            sample_dist = self.model.sample_level_mlp(
                prev_samples, upper_tier_conditioning
            ).squeeze(1).exp_().data
            sequences[:, i] = sample_dist.multinomial(1).squeeze(1)

        torch.backends.cudnn.enabled = True

        return sequences[:, self.model.lookback :]


import math
import random

class PrimedGenerator(Runner):

    def __init__(self, model, cuda=False):
        super().__init__(model)
        self.cuda = cuda

    def __call__(self, n_seqs, seq_len, primer, prime_param_a, prime_param_b, recursive):
        # generation doesn't work with CUDNN for some reason
        torch.backends.cudnn.enabled = False

        self.reset_hidden_states()

        n_samples = self.model.lookback + seq_len
        bottom_frame_size = self.model.frame_level_rnns[0].n_frame_samples
        sequences = torch.LongTensor(n_seqs, n_samples) # 64-bit int
        frame_level_outputs = [None for _ in self.model.frame_level_rnns]

        out_sequences = torch.LongTensor(n_seqs, n_samples).fill_(utils.q_zero(self.model.q_levels))
        tmp_sequences = torch.LongTensor(n_seqs, n_samples).fill_(utils.q_zero(self.model.q_levels))

        q_levels = self.model.q_levels
        q_min = 0
        q_max = q_levels

        print("_______-___-_---_-____")
        print("_____________--_-_-_______")
        print("INITTTTTTTT {}".format(primer))
        print("__________________--_-__--_________________")
        print("__-__________-_______________")

        def _noise(x):
            for i in range(n_samples):
                x[:, i] = int(random.triangular(q_min, q_max))
            return x
        def _sin(x):
            primer_freq = float(prime_param_a)
            for i in range(n_samples):
                x[:, i] = int((math.sin(i/44100 * primer_freq) + 1) / 2 * (q_max - q_min) + q_min)
            return x

        sequence_lookup = {
          'zero': lambda x: x.fill_(utils.q_zero(self.model.q_levels)),
          'noise': _noise,
          'sin': _sin,
        }

        sequences = sequence_lookup.get(primer, 'zero')(sequences)
        # out_sequences = sequence_lookup.get(primer, 'zero')(out_sequences)
        out_sequences[:, :self.model.lookback] = sequences[:, :self.model.lookback]

        # here we are generating the subsequence each time,
        # but maybe we want to generate the subsequence bottom_frame_size length
        # and then draw from that, although this will really emphasize the recursion
        def get_sub_sequence(i, n):
            sub_sequence_a = sequences[:, i-n : i]        # generated
            sub_sequence_b = out_sequences[:, i-n : i]    # recursive
            tmp_sub_sequence = tmp_sequences[:, i-n : i]  # tmp/output

            for j in range(n):
                ratio = j / (n-1)
                a = sub_sequence_a[:, j].float() * (1-ratio)
                b = sub_sequence_b[:, j].float() * ratio
                tmp_sub_sequence[:, j] = torch.clamp(a + b, 1, q_levels-1).long()

            return tmp_sub_sequence

        for i in range(self.model.lookback, self.model.lookback + seq_len):

            for (tier_index, rnn) in \
                    reversed(list(enumerate(self.model.frame_level_rnns))):
                if i % rnn.n_frame_samples != 0:
                    continue

                sub_sequence = get_sub_sequence(i, rnn.n_frame_samples)

                prev_samples = torch.autograd.Variable(
                    2 * utils.linear_dequantize(
                        sub_sequence,
                        self.model.q_levels
                    ).unsqueeze(1),
                    volatile=True
                )
                if self.cuda:
                    prev_samples = prev_samples.cuda()

                if tier_index == len(self.model.frame_level_rnns) - 1:
                    upper_tier_conditioning = None
                else:
                    frame_index = (i // rnn.n_frame_samples) % \
                        self.model.frame_level_rnns[tier_index + 1].frame_size
                    upper_tier_conditioning = \
                        frame_level_outputs[tier_index + 1][:, frame_index, :] \
                                           .unsqueeze(1)

                frame_level_outputs[tier_index] = self.run_rnn(
                    rnn, prev_samples, upper_tier_conditioning
                )

            sub_sequence = get_sub_sequence(i, bottom_frame_size)
            # sub_sequence = out_sequences[:, i-bottom_frame_size : i]

            prev_samples = torch.autograd.Variable(
                sub_sequence,
                volatile=True
            )
            if self.cuda:
                prev_samples = prev_samples.cuda()

            upper_tier_conditioning = \
                frame_level_outputs[0][:, i % bottom_frame_size, :] \
                                      .unsqueeze(1)
            sample_dist = self.model.sample_level_mlp(
                prev_samples, upper_tier_conditioning
            ).squeeze(1).exp_().data
            multi = sample_dist.multinomial(1)
            pred = multi.squeeze(1)
            out_sequences[:, i] = pred

        torch.backends.cudnn.enabled = True

        return out_sequences[:, self.model.lookback :]