summaryrefslogtreecommitdiff
path: root/model.py
diff options
context:
space:
mode:
Diffstat (limited to 'model.py')
-rw-r--r--model.py32
1 files changed, 3 insertions, 29 deletions
diff --git a/model.py b/model.py
index 8592ddc..0a3dc54 100644
--- a/model.py
+++ b/model.py
@@ -329,25 +329,18 @@ class PrimedGenerator(Runner):
q_max = q_levels
print("_______-___-_---_-____")
- print("_____________--_-_-_______")
print("INITTTTTTTT {}".format(primer))
- if recursive:
- print("RECURSIVE")
print(sequences.shape)
print("__________________--_-__--_________________")
print("__-__________-_______________")
def _noise(x):
for i in range(n_samples):
- if (i % 1000) == 0:
- print("{}...".format(i))
x[:, i] = int(random.triangular(q_min, q_max))
return x
def _sin(x):
primer_freq = float(prime_param_a)
for i in range(n_samples):
- if (i % 1000) == 0:
- print("{}...".format(i))
x[:, i] = int((math.sin(i/44100 * primer_freq) + 1) / 2 * (q_max - q_min) + q_min)
return x
@@ -357,19 +350,14 @@ class PrimedGenerator(Runner):
'sin': _sin,
}
- print("BUILDING SEQUENCES")
-
sequences = sequence_lookup.get(primer, 'zero')(sequences)
# out_sequences = sequence_lookup.get(primer, 'zero')(out_sequences)
out_sequences[:, :self.model.lookback] = sequences[:, :self.model.lookback]
- print("BUILT....")
-
# here we are generating the subsequence each time,
# but maybe we want to generate the subsequence bottom_frame_size length
# and then draw from that, although this will really emphasize the recursion
def get_sub_sequence(i, n):
- print("get subsequence {} {}".format(i, n))
sub_sequence_a = sequences[:, i-n : i] # generated
sub_sequence_b = out_sequences[:, i-n : i] # recursive
tmp_sub_sequence = tmp_sequences[:, i-n : i] # tmp/output
@@ -382,11 +370,7 @@ class PrimedGenerator(Runner):
return tmp_sub_sequence
- print("ENTERING LOOP....")
-
for i in range(self.model.lookback, self.model.lookback + seq_len):
- # if (i % 100) == 0:
- print("{}...".format(i))
for (tier_index, rnn) in \
reversed(list(enumerate(self.model.frame_level_rnns))):
@@ -417,11 +401,8 @@ class PrimedGenerator(Runner):
frame_level_outputs[tier_index] = self.run_rnn(
rnn, prev_samples, upper_tier_conditioning
)
- print("ran rnn")
- print("at bottom frame")
- # sub_sequence = get_sub_sequence(i, bottom_frame_size)
- sub_sequence = sequences[:, i-bottom_frame_size : i]
+ sub_sequence = get_sub_sequence(i, bottom_frame_size)
prev_samples = torch.autograd.Variable(
sub_sequence,
@@ -430,21 +411,14 @@ class PrimedGenerator(Runner):
if self.cuda:
prev_samples = prev_samples.cuda()
- print("get upper tier conditioning.. {}".format(i % bottom_frame_size))
upper_tier_conditioning = \
frame_level_outputs[0][:, i % bottom_frame_size, :] \
.unsqueeze(1)
- print(upper_tier_conditioning.shape)
sample_dist = self.model.sample_level_mlp(
prev_samples, upper_tier_conditioning
).squeeze(1).exp_().data
- print(sample_dist.shape)
- multi = sample_dist.multinomial(1)
- print(multi.shape)
- pred = multi.squeeze(1)
- print(pred.shape)
- print(out_sequences.shape)
- out_sequences[:, i] = pred
+
+ out_sequences[:, i] = sample_dist.multinomial(1).squeeze(1)
torch.backends.cudnn.enabled = True