summaryrefslogtreecommitdiff
path: root/network.py
blob: 6915731ec6dd1a0f539ea85f8c6ff2b848520e24 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import math
import torch
import torch.utils.serialization

from SeparableConvolution import SeparableConvolution # the custom SeparableConvolution layer

torch.cuda.device(1) # change this if you have a multiple graphics cards and you want to utilize them

torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance

class Network(torch.nn.Module):
  def __init__(self, model_name):
    super(Network, self).__init__()

    def Basic(intInput, intOutput):
      return torch.nn.Sequential(
        torch.nn.Conv2d(in_channels=intInput, out_channels=intOutput, kernel_size=3, stride=1, padding=1),
        torch.nn.ReLU(inplace=False),
        torch.nn.Conv2d(in_channels=intOutput, out_channels=intOutput, kernel_size=3, stride=1, padding=1),
        torch.nn.ReLU(inplace=False),
        torch.nn.Conv2d(in_channels=intOutput, out_channels=intOutput, kernel_size=3, stride=1, padding=1),
        torch.nn.ReLU(inplace=False)
      )
    # end

    def Subnet():
      return torch.nn.Sequential(
        torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
        torch.nn.ReLU(inplace=False),
        torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
        torch.nn.ReLU(inplace=False),
        torch.nn.Conv2d(in_channels=64, out_channels=51, kernel_size=3, stride=1, padding=1),
        torch.nn.ReLU(inplace=False),
        torch.nn.Upsample(scale_factor=2, mode='bilinear'),
        torch.nn.Conv2d(in_channels=51, out_channels=51, kernel_size=3, stride=1, padding=1)
      )
    # end

    self.moduleConv1 = Basic(6, 32)
    self.modulePool1 = torch.nn.AvgPool2d(kernel_size=2, stride=2)

    self.moduleConv2 = Basic(32, 64)
    self.modulePool2 = torch.nn.AvgPool2d(kernel_size=2, stride=2)

    self.moduleConv3 = Basic(64, 128)
    self.modulePool3 = torch.nn.AvgPool2d(kernel_size=2, stride=2)

    self.moduleConv4 = Basic(128, 256)
    self.modulePool4 = torch.nn.AvgPool2d(kernel_size=2, stride=2)

    self.moduleConv5 = Basic(256, 512)
    self.modulePool5 = torch.nn.AvgPool2d(kernel_size=2, stride=2)

    self.moduleDeconv5 = Basic(512, 512)
    self.moduleUpsample5 = torch.nn.Sequential(
      torch.nn.Upsample(scale_factor=2, mode='bilinear'),
      torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
      torch.nn.ReLU(inplace=False)
    )

    self.moduleDeconv4 = Basic(512, 256)
    self.moduleUpsample4 = torch.nn.Sequential(
      torch.nn.Upsample(scale_factor=2, mode='bilinear'),
      torch.nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
      torch.nn.ReLU(inplace=False)
    )

    self.moduleDeconv3 = Basic(256, 128)
    self.moduleUpsample3 = torch.nn.Sequential(
      torch.nn.Upsample(scale_factor=2, mode='bilinear'),
      torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
      torch.nn.ReLU(inplace=False)
    )

    self.moduleDeconv2 = Basic(128, 64)
    self.moduleUpsample2 = torch.nn.Sequential(
      torch.nn.Upsample(scale_factor=2, mode='bilinear'),
      torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
      torch.nn.ReLU(inplace=False)
    )

    self.moduleVertical1 = Subnet()
    self.moduleVertical2 = Subnet()
    self.moduleHorizontal1 = Subnet()
    self.moduleHorizontal2 = Subnet()

    self.modulePad = torch.nn.ReplicationPad2d([ int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)) ])

    self.load_state_dict(torch.load('./network-' + model_name + '.pytorch'))
  # end

  def forward(self, variableInput1, variableInput2):
    variableJoin = torch.cat([variableInput1, variableInput2], 1)

    variableConv1 = self.moduleConv1(variableJoin)
    variablePool1 = self.modulePool1(variableConv1)

    variableConv2 = self.moduleConv2(variablePool1)
    variablePool2 = self.modulePool2(variableConv2)

    variableConv3 = self.moduleConv3(variablePool2)
    variablePool3 = self.modulePool3(variableConv3)

    variableConv4 = self.moduleConv4(variablePool3)
    variablePool4 = self.modulePool4(variableConv4)

    variableConv5 = self.moduleConv5(variablePool4)
    variablePool5 = self.modulePool5(variableConv5)

    variableDeconv5 = self.moduleDeconv5(variablePool5)
    variableUpsample5 = self.moduleUpsample5(variableDeconv5)

    variableCombine = variableUpsample5 + variableConv5

    variableDeconv4 = self.moduleDeconv4(variableCombine)
    variableUpsample4 = self.moduleUpsample4(variableDeconv4)

    variableCombine = variableUpsample4 + variableConv4

    variableDeconv3 = self.moduleDeconv3(variableCombine)
    variableUpsample3 = self.moduleUpsample3(variableDeconv3)

    variableCombine = variableUpsample3 + variableConv3

    variableDeconv2 = self.moduleDeconv2(variableCombine)
    variableUpsample2 = self.moduleUpsample2(variableDeconv2)

    variableCombine = variableUpsample2 + variableConv2

    variableDot1 = SeparableConvolution()(self.modulePad(variableInput1), self.moduleVertical1(variableCombine), self.moduleHorizontal1(variableCombine))
    variableDot2 = SeparableConvolution()(self.modulePad(variableInput2), self.moduleVertical2(variableCombine), self.moduleHorizontal2(variableCombine))

    return variableDot1 + variableDot2
  # end
# end

##########################################################

def process(moduleNetwork, tensorInputFirst, tensorInputSecond, tensorOutput):
  assert(tensorInputFirst.size(1) == tensorInputSecond.size(1))
  assert(tensorInputFirst.size(2) == tensorInputSecond.size(2))

  intWidth = tensorInputFirst.size(2)
  intHeight = tensorInputFirst.size(1)

  assert(intWidth <= 1280) # while our approach works with larger images, we do not recommend it unless you are aware of the implications
  assert(intHeight <= 720) # while our approach works with larger images, we do not recommend it unless you are aware of the implications

  intPaddingLeft = int(math.floor(51 / 2.0))
  intPaddingTop = int(math.floor(51 / 2.0))
  intPaddingRight = int(math.floor(51 / 2.0))
  intPaddingBottom = int(math.floor(51 / 2.0))
  modulePaddingInput = torch.nn.Module()
  modulePaddingOutput = torch.nn.Module()

  if True:
    intPaddingWidth = intPaddingLeft + intWidth + intPaddingRight
    intPaddingHeight = intPaddingTop + intHeight + intPaddingBottom

    if intPaddingWidth != ((intPaddingWidth >> 7) << 7):
      intPaddingWidth = (((intPaddingWidth >> 7) + 1) << 7) # more than necessary
    # end
    
    if intPaddingHeight != ((intPaddingHeight >> 7) << 7):
      intPaddingHeight = (((intPaddingHeight >> 7) + 1) << 7) # more than necessary
    # end

    intPaddingWidth = intPaddingWidth - (intPaddingLeft + intWidth + intPaddingRight)
    intPaddingHeight = intPaddingHeight - (intPaddingTop + intHeight + intPaddingBottom)

    modulePaddingInput = torch.nn.ReplicationPad2d([intPaddingLeft, intPaddingRight + intPaddingWidth, intPaddingTop, intPaddingBottom + intPaddingHeight])
    modulePaddingOutput = torch.nn.ReplicationPad2d([0 - intPaddingLeft, 0 - intPaddingRight - intPaddingWidth, 0 - intPaddingTop, 0 - intPaddingBottom - intPaddingHeight])
  # end

  if True:
    tensorInputFirst = tensorInputFirst.cuda()
    tensorInputSecond = tensorInputSecond.cuda()

    modulePaddingInput = modulePaddingInput.cuda()
    modulePaddingOutput = modulePaddingOutput.cuda()
  # end

  if True:
    variablePaddingFirst = modulePaddingInput(torch.autograd.Variable(data=tensorInputFirst.view(1, 3, intHeight, intWidth), volatile=True))
    variablePaddingSecond = modulePaddingInput(torch.autograd.Variable(data=tensorInputSecond.view(1, 3, intHeight, intWidth), volatile=True))
    variablePaddingOutput = modulePaddingOutput(moduleNetwork(variablePaddingFirst, variablePaddingSecond))

    tensorOutput.resize_(3, intHeight, intWidth).copy_(variablePaddingOutput.data[0])
  # end

  if True:
    tensorInputFirst.cpu()
    tensorInputSecond.cpu()
    tensorOutput.cpu()
  # end
#end