1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
import math
import torch
import torch.utils.serialization
from SeparableConvolution import SeparableConvolution # the custom SeparableConvolution layer
torch.cuda.device(1) # change this if you have a multiple graphics cards and you want to utilize them
torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance
class Network(torch.nn.Module):
def __init__(self, model_name):
super(Network, self).__init__()
def Basic(intInput, intOutput):
return torch.nn.Sequential(
torch.nn.Conv2d(in_channels=intInput, out_channels=intOutput, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False),
torch.nn.Conv2d(in_channels=intOutput, out_channels=intOutput, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False),
torch.nn.Conv2d(in_channels=intOutput, out_channels=intOutput, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False)
)
# end
def Subnet():
return torch.nn.Sequential(
torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False),
torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False),
torch.nn.Conv2d(in_channels=64, out_channels=51, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False),
torch.nn.Upsample(scale_factor=2, mode='bilinear'),
torch.nn.Conv2d(in_channels=51, out_channels=51, kernel_size=3, stride=1, padding=1)
)
# end
self.moduleConv1 = Basic(6, 32)
self.modulePool1 = torch.nn.AvgPool2d(kernel_size=2, stride=2)
self.moduleConv2 = Basic(32, 64)
self.modulePool2 = torch.nn.AvgPool2d(kernel_size=2, stride=2)
self.moduleConv3 = Basic(64, 128)
self.modulePool3 = torch.nn.AvgPool2d(kernel_size=2, stride=2)
self.moduleConv4 = Basic(128, 256)
self.modulePool4 = torch.nn.AvgPool2d(kernel_size=2, stride=2)
self.moduleConv5 = Basic(256, 512)
self.modulePool5 = torch.nn.AvgPool2d(kernel_size=2, stride=2)
self.moduleDeconv5 = Basic(512, 512)
self.moduleUpsample5 = torch.nn.Sequential(
torch.nn.Upsample(scale_factor=2, mode='bilinear'),
torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False)
)
self.moduleDeconv4 = Basic(512, 256)
self.moduleUpsample4 = torch.nn.Sequential(
torch.nn.Upsample(scale_factor=2, mode='bilinear'),
torch.nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False)
)
self.moduleDeconv3 = Basic(256, 128)
self.moduleUpsample3 = torch.nn.Sequential(
torch.nn.Upsample(scale_factor=2, mode='bilinear'),
torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False)
)
self.moduleDeconv2 = Basic(128, 64)
self.moduleUpsample2 = torch.nn.Sequential(
torch.nn.Upsample(scale_factor=2, mode='bilinear'),
torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False)
)
self.moduleVertical1 = Subnet()
self.moduleVertical2 = Subnet()
self.moduleHorizontal1 = Subnet()
self.moduleHorizontal2 = Subnet()
self.modulePad = torch.nn.ReplicationPad2d([ int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)) ])
self.load_state_dict(torch.load('./network-' + model_name + '.pytorch'))
# end
def forward(self, variableInput1, variableInput2):
variableJoin = torch.cat([variableInput1, variableInput2], 1)
variableConv1 = self.moduleConv1(variableJoin)
variablePool1 = self.modulePool1(variableConv1)
variableConv2 = self.moduleConv2(variablePool1)
variablePool2 = self.modulePool2(variableConv2)
variableConv3 = self.moduleConv3(variablePool2)
variablePool3 = self.modulePool3(variableConv3)
variableConv4 = self.moduleConv4(variablePool3)
variablePool4 = self.modulePool4(variableConv4)
variableConv5 = self.moduleConv5(variablePool4)
variablePool5 = self.modulePool5(variableConv5)
variableDeconv5 = self.moduleDeconv5(variablePool5)
variableUpsample5 = self.moduleUpsample5(variableDeconv5)
variableCombine = variableUpsample5 + variableConv5
variableDeconv4 = self.moduleDeconv4(variableCombine)
variableUpsample4 = self.moduleUpsample4(variableDeconv4)
variableCombine = variableUpsample4 + variableConv4
variableDeconv3 = self.moduleDeconv3(variableCombine)
variableUpsample3 = self.moduleUpsample3(variableDeconv3)
variableCombine = variableUpsample3 + variableConv3
variableDeconv2 = self.moduleDeconv2(variableCombine)
variableUpsample2 = self.moduleUpsample2(variableDeconv2)
variableCombine = variableUpsample2 + variableConv2
variableDot1 = SeparableConvolution()(self.modulePad(variableInput1), self.moduleVertical1(variableCombine), self.moduleHorizontal1(variableCombine))
variableDot2 = SeparableConvolution()(self.modulePad(variableInput2), self.moduleVertical2(variableCombine), self.moduleHorizontal2(variableCombine))
return variableDot1 + variableDot2
# end
# end
##########################################################
def process(moduleNetwork, tensorInputFirst, tensorInputSecond, tensorOutput):
assert(tensorInputFirst.size(1) == tensorInputSecond.size(1))
assert(tensorInputFirst.size(2) == tensorInputSecond.size(2))
intWidth = tensorInputFirst.size(2)
intHeight = tensorInputFirst.size(1)
assert(intWidth <= 1280) # while our approach works with larger images, we do not recommend it unless you are aware of the implications
assert(intHeight <= 720) # while our approach works with larger images, we do not recommend it unless you are aware of the implications
intPaddingLeft = int(math.floor(51 / 2.0))
intPaddingTop = int(math.floor(51 / 2.0))
intPaddingRight = int(math.floor(51 / 2.0))
intPaddingBottom = int(math.floor(51 / 2.0))
modulePaddingInput = torch.nn.Module()
modulePaddingOutput = torch.nn.Module()
if True:
intPaddingWidth = intPaddingLeft + intWidth + intPaddingRight
intPaddingHeight = intPaddingTop + intHeight + intPaddingBottom
if intPaddingWidth != ((intPaddingWidth >> 7) << 7):
intPaddingWidth = (((intPaddingWidth >> 7) + 1) << 7) # more than necessary
# end
if intPaddingHeight != ((intPaddingHeight >> 7) << 7):
intPaddingHeight = (((intPaddingHeight >> 7) + 1) << 7) # more than necessary
# end
intPaddingWidth = intPaddingWidth - (intPaddingLeft + intWidth + intPaddingRight)
intPaddingHeight = intPaddingHeight - (intPaddingTop + intHeight + intPaddingBottom)
modulePaddingInput = torch.nn.ReplicationPad2d([intPaddingLeft, intPaddingRight + intPaddingWidth, intPaddingTop, intPaddingBottom + intPaddingHeight])
modulePaddingOutput = torch.nn.ReplicationPad2d([0 - intPaddingLeft, 0 - intPaddingRight - intPaddingWidth, 0 - intPaddingTop, 0 - intPaddingBottom - intPaddingHeight])
# end
if True:
tensorInputFirst = tensorInputFirst.cuda()
tensorInputSecond = tensorInputSecond.cuda()
modulePaddingInput = modulePaddingInput.cuda()
modulePaddingOutput = modulePaddingOutput.cuda()
# end
if True:
variablePaddingFirst = modulePaddingInput(torch.autograd.Variable(data=tensorInputFirst.view(1, 3, intHeight, intWidth), volatile=True))
variablePaddingSecond = modulePaddingInput(torch.autograd.Variable(data=tensorInputSecond.view(1, 3, intHeight, intWidth), volatile=True))
variablePaddingOutput = modulePaddingOutput(moduleNetwork(variablePaddingFirst, variablePaddingSecond))
tensorOutput.resize_(3, intHeight, intWidth).copy_(variablePaddingOutput.data[0])
# end
if True:
tensorInputFirst.cpu()
tensorInputSecond.cpu()
tensorOutput.cpu()
# end
#end
|