diff options
| author | sniklaus <simon.niklaus@outlook.com> | 2017-09-09 22:59:59 -0700 |
|---|---|---|
| committer | sniklaus <simon.niklaus@outlook.com> | 2017-09-09 22:59:59 -0700 |
| commit | cb73882b7f6b48f4ba73426b140e77d0d1d97468 (patch) | |
| tree | b2a45d643d3703e489ae2fd18ffd1143b4c7df3e /run.py | |
no message
Diffstat (limited to 'run.py')
| -rw-r--r-- | run.py | 232 |
1 files changed, 232 insertions, 0 deletions
@@ -0,0 +1,232 @@ +#!/usr/bin/env python2.7 + +import sys +import getopt +import math +import numpy +import torch +import torch.utils.serialization +import PIL +import PIL.Image + +from SeparableConvolution import SeparableConvolution # the custom SeparableConvolution layer + +torch.cuda.device(1) # change this if you have a multiple graphics cards and you want to utilize them + +torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance + +########################################################## + +arguments_strModel = 'lf' +arguments_strFirst = './images/first.png' +arguments_strSecond = './images/second.png' +arguments_strOut = './result.png' + +for strOption, strArgument in getopt.getopt(sys.argv[1:], '', [ strParameter[2:] + '=' for strParameter in sys.argv[1::2] ])[0]: + if strOption == '--model': + arguments_strModel = strArgument # which model to use, l1 or lf, please see our paper for more details + + elif strOption == '--first': + arguments_strFirst = strArgument # path to the first frame + + elif strOption == '--second': + arguments_strSecond = strArgument # path to the first frame + + elif strOption == '--out': + arguments_strOut = strArgument # path to where the output should be stored + + # end +# end + +########################################################## + +class Network(torch.nn.Module): + def __init__(self): + super(Network, self).__init__() + + def Basic(intInput, intOutput): + return torch.nn.Sequential( + torch.nn.Conv2d(in_channels=intInput, out_channels=intOutput, kernel_size=3, stride=1, padding=1), + torch.nn.ReLU(inplace=False), + torch.nn.Conv2d(in_channels=intOutput, out_channels=intOutput, kernel_size=3, stride=1, padding=1), + torch.nn.ReLU(inplace=False), + torch.nn.Conv2d(in_channels=intOutput, out_channels=intOutput, kernel_size=3, stride=1, padding=1), + torch.nn.ReLU(inplace=False) + ) + # end + + def Subnet(): + return torch.nn.Sequential( + torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1), + torch.nn.ReLU(inplace=False), + torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1), + torch.nn.ReLU(inplace=False), + torch.nn.Conv2d(in_channels=64, out_channels=51, kernel_size=3, stride=1, padding=1), + torch.nn.ReLU(inplace=False), + torch.nn.Upsample(scale_factor=2, mode='bilinear'), + torch.nn.Conv2d(in_channels=51, out_channels=51, kernel_size=3, stride=1, padding=1) + ) + # end + + self.moduleConv1 = Basic(6, 32) + self.modulePool1 = torch.nn.AvgPool2d(kernel_size=2, stride=2) + + self.moduleConv2 = Basic(32, 64) + self.modulePool2 = torch.nn.AvgPool2d(kernel_size=2, stride=2) + + self.moduleConv3 = Basic(64, 128) + self.modulePool3 = torch.nn.AvgPool2d(kernel_size=2, stride=2) + + self.moduleConv4 = Basic(128, 256) + self.modulePool4 = torch.nn.AvgPool2d(kernel_size=2, stride=2) + + self.moduleConv5 = Basic(256, 512) + self.modulePool5 = torch.nn.AvgPool2d(kernel_size=2, stride=2) + + self.moduleDeconv5 = Basic(512, 512) + self.moduleUpsample5 = torch.nn.Sequential( + torch.nn.Upsample(scale_factor=2, mode='bilinear'), + torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1), + torch.nn.ReLU(inplace=False) + ) + + self.moduleDeconv4 = Basic(512, 256) + self.moduleUpsample4 = torch.nn.Sequential( + torch.nn.Upsample(scale_factor=2, mode='bilinear'), + torch.nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1), + torch.nn.ReLU(inplace=False) + ) + + self.moduleDeconv3 = Basic(256, 128) + self.moduleUpsample3 = torch.nn.Sequential( + torch.nn.Upsample(scale_factor=2, mode='bilinear'), + torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1), + torch.nn.ReLU(inplace=False) + ) + + self.moduleDeconv2 = Basic(128, 64) + self.moduleUpsample2 = torch.nn.Sequential( + torch.nn.Upsample(scale_factor=2, mode='bilinear'), + torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1), + torch.nn.ReLU(inplace=False) + ) + + self.moduleVertical1 = Subnet() + self.moduleVertical2 = Subnet() + self.moduleHorizontal1 = Subnet() + self.moduleHorizontal2 = Subnet() + + self.modulePad = torch.nn.ReplicationPad2d([ int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)) ]) + + self.load_state_dict(torch.load('./network-' + arguments_strModel + '.pytorch')) + # end + + def forward(self, variableInput1, variableInput2): + variableJoin = torch.cat([variableInput1, variableInput2], 1) + + variableConv1 = self.moduleConv1(variableJoin) + variablePool1 = self.modulePool1(variableConv1) + + variableConv2 = self.moduleConv2(variablePool1) + variablePool2 = self.modulePool2(variableConv2) + + variableConv3 = self.moduleConv3(variablePool2) + variablePool3 = self.modulePool3(variableConv3) + + variableConv4 = self.moduleConv4(variablePool3) + variablePool4 = self.modulePool4(variableConv4) + + variableConv5 = self.moduleConv5(variablePool4) + variablePool5 = self.modulePool5(variableConv5) + + variableDeconv5 = self.moduleDeconv5(variablePool5) + variableUpsample5 = self.moduleUpsample5(variableDeconv5) + + variableDeconv4 = self.moduleDeconv4(variableUpsample5 + variableConv5) + variableUpsample4 = self.moduleUpsample4(variableDeconv4) + + variableDeconv3 = self.moduleDeconv3(variableUpsample4 + variableConv4) + variableUpsample3 = self.moduleUpsample3(variableDeconv3) + + variableDeconv2 = self.moduleDeconv2(variableUpsample3 + variableConv3) + variableUpsample2 = self.moduleUpsample2(variableDeconv2) + + variableCombine = variableUpsample2 + variableConv2 + + variableDot1 = SeparableConvolution()(self.modulePad(variableInput1), self.moduleVertical1(variableCombine), self.moduleHorizontal1(variableCombine)) + variableDot2 = SeparableConvolution()(self.modulePad(variableInput2), self.moduleVertical2(variableCombine), self.moduleHorizontal2(variableCombine)) + + return variableDot1 + variableDot2 + # end +# end + +moduleNetwork = Network().cuda() + +########################################################## + +tensorInputFirst = torch.FloatTensor(numpy.rollaxis(numpy.asarray(PIL.Image.open(arguments_strFirst))[:,:,::-1], 2, 0).astype(numpy.float32) / 255.0) +tensorInputSecond = torch.FloatTensor(numpy.rollaxis(numpy.asarray(PIL.Image.open(arguments_strSecond))[:,:,::-1], 2, 0).astype(numpy.float32) / 255.0) +tensorOutput = torch.FloatTensor() + +assert(tensorInputFirst.size(1) == tensorInputSecond.size(1)) +assert(tensorInputFirst.size(2) == tensorInputSecond.size(2)) + +intWidth = tensorInputFirst.size(2) +intHeight = tensorInputFirst.size(1) + +assert(intWidth <= 1280) # while our approach works with larger images, we do not recommend it unless you are aware of the implications +assert(intHeight <= 720) # while our approach works with larger images, we do not recommend it unless you are aware of the implications + +intPaddingLeft = int(math.floor(51 / 2.0)) +intPaddingTop = int(math.floor(51 / 2.0)) +intPaddingRight = int(math.floor(51 / 2.0)) +intPaddingBottom = int(math.floor(51 / 2.0)) +modulePaddingFirst = torch.nn.Module() +modulePaddingSecond = torch.nn.Module() +modulePaddingOutput = torch.nn.Module() + +if True: + intPaddingWidth = intPaddingLeft + intWidth + intPaddingRight + intPaddingHeight = intPaddingTop + intHeight + intPaddingBottom + + if intPaddingWidth != ((intPaddingWidth >> 7) << 7): + intPaddingWidth = (((intPaddingWidth >> 7) + 1) << 7) # more than necessary + # end + + if intPaddingHeight != ((intPaddingHeight >> 7) << 7): + intPaddingHeight = (((intPaddingHeight >> 7) + 1) << 7) # more than necessary + # end + + intPaddingWidth = intPaddingWidth - (intPaddingLeft + intWidth + intPaddingRight) + intPaddingHeight = intPaddingHeight - (intPaddingTop + intHeight + intPaddingBottom) + + modulePaddingFirst = torch.nn.ReplicationPad2d([intPaddingLeft, intPaddingRight + intPaddingWidth, intPaddingTop, intPaddingBottom + intPaddingHeight]) + modulePaddingSecond = torch.nn.ReplicationPad2d([intPaddingLeft, intPaddingRight + intPaddingWidth, intPaddingTop, intPaddingBottom + intPaddingHeight]) + modulePaddingOutput = torch.nn.ReplicationPad2d([0 - intPaddingLeft, 0 - intPaddingRight - intPaddingWidth, 0 - intPaddingTop, 0 - intPaddingBottom - intPaddingHeight]) + + modulePaddingFirst = modulePaddingFirst.cuda() + modulePaddingSecond = modulePaddingSecond.cuda() + modulePaddingOutput = modulePaddingOutput.cuda() +# end + +if True: + tensorInputFirst = tensorInputFirst.cuda() + tensorInputSecond = tensorInputSecond.cuda() + tensorOutput = tensorOutput.cuda() +# end + +if True: + variablePaddingFirst = modulePaddingFirst(torch.autograd.Variable(data=tensorInputFirst.view(1, 3, intHeight, intWidth), volatile=True)) + variablePaddingSecond = modulePaddingSecond(torch.autograd.Variable(data=tensorInputSecond.view(1, 3, intHeight, intWidth), volatile=True)) + variablePaddingOutput = modulePaddingOutput(moduleNetwork(variablePaddingFirst, variablePaddingSecond)) + + tensorOutput.resize_(3, intHeight, intWidth).copy_(variablePaddingOutput.data[0]) +# end + +if True: + tensorInputFirst = tensorInputFirst.cpu() + tensorInputSecond = tensorInputSecond.cpu() + tensorOutput = tensorOutput.cpu() +# end + +PIL.Image.fromarray((numpy.rollaxis(tensorOutput.clamp(0.0, 1.0).numpy(), 0, 3)[:,:,::-1] * 255.0).astype(numpy.uint8)).save(arguments_strOut)
\ No newline at end of file |
