summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2018-06-26 17:01:38 +0200
committerJules Laplace <julescarbon@gmail.com>2018-06-26 17:01:38 +0200
commit1cf17526b0654e1ecbf4f362c5361a7b52cbbb19 (patch)
treef65cb68d5315d3ea6deaf2ca4ae5e186d7fe354a
parenta94098de2ff61f38861bd491093aa757114f6274 (diff)
dataset
-rw-r--r--run.py15
1 files changed, 14 insertions, 1 deletions
diff --git a/run.py b/run.py
index 00535fa..c58afa2 100644
--- a/run.py
+++ b/run.py
@@ -28,6 +28,7 @@ arguments_aOffset = 0
arguments_bOffset = 0
arguments_mixVideos = False
arguments_averageVideos = False
+arguments_mixImages = False
arguments_endpoint = None
arguments_dataset = "dataset"
@@ -53,6 +54,8 @@ for strOption, strArgument in getopt.getopt(sys.argv[1:], '', [ strParameter[2:]
arguments_smooth = bool(strArgument)
elif strOption == '--mix-videos':
arguments_mixVideos = bool(strArgument)
+ elif strOption == '--mix-images':
+ arguments_mixImages = bool(strArgument)
elif strOption == '--average-videos':
arguments_averageVideos = bool(strArgument)
elif strOption == '--a-offset':
@@ -216,7 +219,6 @@ def store_frames(frames, outputPath, inputFirst=None, inputSecond=None, endpoint
endpoint
])
-
def tensor_to_image(np_val):
return (numpy.rollaxis(np_val, 0, 3)[:,:,::-1] * 255.0).astype(numpy.uint8)
@@ -264,6 +266,17 @@ elif arguments_steps == 0:
tensorInputSecond = load_image_tensor(arguments_strSecond)
process(moduleNetwork, tensorInputFirst, tensorInputSecond, tensorOutput)
PIL.Image.fromarray((numpy.rollaxis(tensorOutput.clamp(0.0, 1.0).numpy(), 0, 3)[:,:,::-1] * 255.0).astype(numpy.uint8)).save(arguments_strOut)
+elif arguments_mixImages:
+ print("{} => {}".format(arguments_strFirst, arguments_strSecond))
+ inputFirst = load_image(os.path.join(arguments_strFirst, "frame_{:0>5}.png".format(int(a_offset))))
+ inputSecond = load_image(os.path.join(arguments_strSecond, "frame_{:0>5}.png".format(int(b_offset))))
+ outputPath = './renders/' + arguments_strVideoOut
+ frames = process_tree(moduleNetwork, inputFirst, inputSecond, tensorOutput, arguments_steps * arguments_dilate, arguments_dilate)
+ frames = smooth_frames(moduleNetwork, tensorOutput, frames, arguments_smooth)
+ print("dilate... {}".format(arguments_dilate))
+ frames = dilate_frames(moduleNetwork, tensorOutput, frames, arguments_dilate)
+ store_frames(frames, outputPath, inputFirst, inputSecond, endpoint=arguments_endpoint, dataset=arguments_dataset)
+
else:
# Morph two images
print("{} => {}".format(arguments_strFirst, arguments_strSecond))