summaryrefslogtreecommitdiff
path: root/live.py
blob: e7db18d1b1c05aa02cc023731712d5b846bc3025 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import sys
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../live-cortex/rpc/'))
from collections import OrderedDict
from options.test_options import TestOptions
from options.dataset_options import DatasetOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import util.util as util
from util.visualizer import Visualizer
from util import html
import torch
from run_engine import run_trt_engine, run_onnx
from datetime import datetime
from PIL import Image, ImageOps
from skimage.transform import resize
from scipy.misc import imresize
import numpy as np
import cv2
import math
import subprocess
import glob
import gevent
from time import sleep
from shutil import copyfile, rmtree

from img_ops import process_image, mix_next_image
from listener import Listener

module_name = 'pix2pixhd'

opt = TestOptions().parse(save=False)
data_opt_parser = DatasetOptions()
data_opt = data_opt_parser.parse(opt.unknown)
data_opt.resize_before_sending = True
opt.nThreads = 1   # test code only supports nThreads = 1
opt.batchSize = 1  # test code only supports batchSize = 1
opt.serial_batches = True  # no shuffle
opt.no_flip = True  # no flip
if data_opt.tag == '':
  d = datetime.now()
  tag = data_opt.tag = "{}_{}".format(
    opt.name,
    # opt.experiment,
    d.strftime('%Y%m%d%H%M')
  )
else:
  tag = data_opt.tag

opt.render_dir = render_dir = opt.results_dir + opt.name + "/" + tag + "/"

print('tag:', tag)
print('render_dir:', render_dir)
util.mkdir(render_dir)

def process_live_input(opt, data_opt, rpc_client):
  print(">>> Process live HD input")
  if data_opt.processing:
    print("Already processing...")
  data_opt.processing = True
  data_loader = CreateDataLoader(opt)
  dataset = data_loader.load_data()

  create_render_dir(opt)
  sequence = read_sequence(data_opt.sequence_name, '')
  print("Got sequence {}, {} images".format(data_opt.sequence, len(sequence)))
  if len(sequence) == 0:
    print("Got empty sequence...")
    data_opt.processing = False
    rpc_client.send_status('processing', False)
    return
  print("First image: {}".format(sequence[0]))

  rpc_client.send_status('processing', True)

  start_img_path = os.path.join(opt.render_dir, "frame_{:05d}.png".format(0))
  copyfile(sequence[0], start_img_path)

  if not opt.engine and not opt.onnx:
    model = create_model(opt)
    if opt.data_type == 16:
      model.half()
    elif opt.data_type == 8:
      model.type(torch.uint8)
    if opt.verbose:
      print(model)

  sequence_i = 1

  print("generating...")
  for i, data in enumerate(data_loader):
    if i >= opt.how_many:
      print("generated {} images, exiting".format(i))
      break

    if data_opt.load_checkpoint is True:
      checkpoint_fn = "{}_net_{}.pth".format(data_opt.epoch, 'G')
      checkpoint_path = os.path.join(opt.checkpoints_dir, '', data_opt.checkpoint_name)
      checkpoint_fn_path = os.path.join(checkpoint_path, checkpoint_fn)
      if os.path.exists(checkpoint_fn_path):
        print("Load checkpoint: {}".format(checkpoint_fn_path))
        model.load_network(model.netG, 'G', data_opt.epoch, checkpoint_path)
      else:
        print("Checkpoint not found: {}".format(checkpoint_fn_path))
      data_opt.load_checkpoint = False
    if data_opt.load_sequence is True:
      data_opt.load_sequence = False
      new_sequence = read_sequence(data_opt.sequence_name, '')
      if len(new_sequence) != 0:
        print("Got sequence {}, {} images, first: {}".format(data_opt.sequence_name, len(new_sequence), new_sequence[0]))
        sequence = new_sequence
        sequence_i = 1
      else:
        print("Sequence not found")
    if data_opt.seek_to != 1:
      if data_opt.seek_to > 0 and data_opt.seek_to < len(sequence):
        sequence_i = data_opt.seek_to
      data_opt.seek_to = 1

    if opt.data_type == 16:
      data['label'] = data['label'].half()
      data['inst']  = data['inst'].half()
    elif opt.data_type == 8:
      data['label'] = data['label'].uint8()
      data['inst']  = data['inst'].uint8()
    minibatch = 1 
    generated = model.inference(data['label'], data['inst'])

    im = util.tensor2im(generated.data[0])

    sequence_i = mix_next_image(opt, data_opt, rpc_client, im, i, sequence, sequence_i)

    if data_opt.pause:
      data_opt.pause = False
      break
    gevent.sleep(data_opt.frame_delay)

  data_opt.processing = False
  rpc_client.send_status('processing', False)

if __name__ == '__main__':
  listener = Listener(opt, data_opt, data_opt_parser, process_live_input)
  listener.connect()