blob: 89ae554ea24f0ecb45e2128496dcaf73189b8c22 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
import torch.utils.data
from data.base_data_loader import BaseDataLoader
def CreateDataset(opt):
dataset = None
if opt.phase == 'recursive':
from data.recursive_dataset import RecursiveDataset
dataset = RecursiveDataset()
elif opt.phase == 'sequence':
from data.sequence_dataset import SequenceDataset
dataset = SequenceDataset()
else:
from data.aligned_dataset import AlignedDataset
dataset = AlignedDataset()
print("dataset [%s] was created" % (dataset.name()))
dataset.initialize(opt)
return dataset
class CustomDatasetDataLoader(BaseDataLoader):
def name(self):
return 'CustomDatasetDataLoader'
def initialize(self, opt):
BaseDataLoader.initialize(self, opt)
self.dataset = CreateDataset(opt)
self.dataloader = torch.utils.data.DataLoader(
self.dataset,
batch_size=opt.batchSize,
shuffle=not opt.serial_batches,
num_workers=int(opt.nThreads))
def load_data(self):
return self.dataloader
def __len__(self):
return min(len(self.dataset), self.opt.max_dataset_size)
|