1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
### Copyright (C) 2017 NVIDIA Corporation. All rights reserved.
### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
import os
import sys
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../live-cortex/rpc/'))
from collections import OrderedDict
from options.test_options import TestOptions
from options.dataset_options import DatasetOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import util.util as util
from util.visualizer import Visualizer
from util import html
import torch
import numpy as np
from run_engine import run_trt_engine, run_onnx
from datetime import datetime
from PIL import Image, ImageOps
from shutil import copyfile, rmtree
from random import randint
from img_ops import read_sequence
import torch.utils.data as data
from PIL import Image
import torchvision.transforms as transforms
def get_transform(opt, method=Image.BICUBIC, normalize=True):
transform_list = []
base = float(2 ** opt.n_downsample_global)
if opt.netG == 'local':
base *= (2 ** opt.n_local_enhancers)
transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method)))
transform_list += [transforms.ToTensor()]
if normalize:
transform_list += [transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))]
return transforms.Compose(transform_list)
def normalize():
return transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
def __make_power_2(img, base, method=Image.BICUBIC):
ow, oh = img.size
h = int(round(oh / base) * base)
w = int(round(ow / base) * base)
if (h == oh) and (w == ow):
return img
return img.resize((w, h), method)
opt = TestOptions().parse(save=False)
data_opt = DatasetOptions().parse(opt.unknown)
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batchSize = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
if data_opt.tag == '':
d = datetime.now()
tag = data_opt.tag = "{}_{}".format(
opt.name,
# opt.experiment,
d.strftime('%Y%m%d%H%M')
)
else:
tag = data_opt.tag
if opt.which_epoch == 'latest':
iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt')
if os.path.exists(iter_path):
try:
current_epoch, epoch_iter = np.loadtxt(iter_path , delimiter=',', dtype=int)
except:
current_epoch, epoch_iter = 1, 0
print('Resuming from epoch %d at iteration %d' % (current_epoch, epoch_iter))
else:
current_epoch, epoch_iter = 1, 0
else:
current_epoch = opt.which_epoch
epoch_id = "{:02d}_{:04d}_{:04d}".format(current_epoch, data_opt.augment_take, data_opt.augment_make)
opt.render_dir = os.path.join(opt.results_dir, opt.name, epoch_id)
if not opt.engine and not opt.onnx:
model = create_model(opt)
if opt.data_type == 16:
model.half()
elif opt.data_type == 8:
model.type(torch.uint8)
if opt.verbose:
print(model)
sequence = read_sequence(data_opt.sequence_name, '')
print("Got sequence {}, {} images".format(data_opt.sequence_name, len(sequence)))
_len = len(sequence) - data_opt.augment_take - 2
if _len <= 0:
print("Got empty sequence...")
data_opt.processing = False
rpc_client.send_status('processing', False)
sys.exit(1)
transform = get_transform(opt)
print('tag:', tag)
print('render_dir:', opt.render_dir)
util.mkdir(opt.render_dir)
# add augment name
for m in range(data_opt.augment_take):
i = randint(0, _len)
index = i
for n in range(data_opt.augment_make):
index = i + n
if n == 0:
A_path = sequence[index]
if opt.verbose:
print(A_path)
A = Image.open(A_path)
A_tensor = transform(A.convert('RGB'))
else:
if opt.verbose:
print(A_path)
A_path = os.path.join(opt.render_dir, "recur_{}_{:05d}_{:05d}.png".format(epoch_id, m, index))
A = Image.open(A_path)
A_tensor = transform(A.convert('RGB'))
inst_tensor = torch.LongTensor([0])
if opt.verbose:
print(A_tensor, inst_tensor)
data = {'label': A_tensor.unsqueeze(0), 'inst': inst_tensor}
if opt.data_type == 16:
data['label'] = data['label'].half()
data['inst'] = data['inst'].half()
elif opt.data_type == 8:
data['label'] = data['label'].uint8()
data['inst'] = data['inst'].uint8()
minibatch = 1
generated = model.inference(data['label'], data['inst'])
tmp_path = os.path.join(opt.render_dir, "recur_{}_{:05d}_{:05d}_tmp.png".format(epoch_id, m, index+1))
next_path = os.path.join(opt.render_dir, "recur_{}_{:05d}_{:05d}.png".format(epoch_id, m, index+1))
print('process image... %i' % index)
im = util.tensor2im(generated.data[0])
image_pil = Image.fromarray(im, mode='RGB')
image_pil.save(tmp_path)
os.rename(tmp_path, next_path)
frame_A = os.path.join("./datasets/", data_opt.sequence_name, "train_A", "recur_{}_{:05d}_{:05d}.png".format(epoch_id, m, index+1))
frame_B = os.path.join("./datasets/", data_opt.sequence_name, "train_B", "recur_{}_{:05d}_{:05d}.png".format(epoch_id, m, index+1))
if os.path.exists(frame_A):
os.unlink(frame_A)
if os.path.exists(frame_B):
os.unlink(frame_B)
os.symlink(os.path.abspath(next_path), os.path.abspath(frame_A))
os.symlink(os.path.abspath(sequence[index+2]), os.path.abspath(frame_B))
|