summaryrefslogtreecommitdiff
path: root/options/base_options.py
diff options
context:
space:
mode:
Diffstat (limited to 'options/base_options.py')
-rwxr-xr-xoptions/base_options.py95
1 files changed, 95 insertions, 0 deletions
diff --git a/options/base_options.py b/options/base_options.py
new file mode 100755
index 0000000..863c061
--- /dev/null
+++ b/options/base_options.py
@@ -0,0 +1,95 @@
+### Copyright (C) 2017 NVIDIA Corporation. All rights reserved.
+### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
+import argparse
+import os
+from util import util
+import torch
+
+class BaseOptions():
+ def __init__(self):
+ self.parser = argparse.ArgumentParser()
+ self.initialized = False
+
+ def initialize(self):
+ # experiment specifics
+ self.parser.add_argument('--name', type=str, default='label2city', help='name of the experiment. It decides where to store samples and models')
+ self.parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
+ self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here')
+ self.parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization')
+ self.parser.add_argument('--use_dropout', action='store_true', help='use dropout for the generator')
+
+ # input/output sizes
+ self.parser.add_argument('--batchSize', type=int, default=1, help='input batch size')
+ self.parser.add_argument('--loadSize', type=int, default=1024, help='scale images to this size')
+ self.parser.add_argument('--fineSize', type=int, default=512, help='then crop to this size')
+ self.parser.add_argument('--label_nc', type=int, default=35, help='# of input image channels')
+ self.parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels')
+
+ # for setting inputs
+ self.parser.add_argument('--dataroot', type=str, default='./datasets/cityscapes/')
+ self.parser.add_argument('--resize_or_crop', type=str, default='scale_width', help='scaling and cropping of images at load time [resize_and_crop|crop|scale_width|scale_width_and_crop]')
+ self.parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly')
+ self.parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data argumentation')
+ self.parser.add_argument('--nThreads', default=2, type=int, help='# threads for loading data')
+ self.parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.')
+
+ # for displays
+ self.parser.add_argument('--display_winsize', type=int, default=512, help='display window size')
+ self.parser.add_argument('--tf_log', action='store_true', help='if specified, use tensorboard logging. Requires tensorflow installed')
+
+ # for generator
+ self.parser.add_argument('--netG', type=str, default='global', help='selects model to use for netG')
+ self.parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
+ self.parser.add_argument('--n_downsample_global', type=int, default=4, help='number of downsampling layers in netG')
+ self.parser.add_argument('--n_blocks_global', type=int, default=9, help='number of residual blocks in the global generator network')
+ self.parser.add_argument('--n_blocks_local', type=int, default=3, help='number of residual blocks in the local enhancer network')
+ self.parser.add_argument('--n_local_enhancers', type=int, default=1, help='number of local enhancers to use')
+ self.parser.add_argument('--niter_fix_global', type=int, default=0, help='number of epochs that we only train the outmost local enhancer')
+
+ # for instance-wise features
+ self.parser.add_argument('--no_instance', action='store_true', help='if specified, do *not* add instance map as input')
+ self.parser.add_argument('--instance_feat', action='store_true', help='if specified, add encoded instance features as input')
+ self.parser.add_argument('--label_feat', action='store_true', help='if specified, add encoded label features as input')
+ self.parser.add_argument('--feat_num', type=int, default=3, help='vector length for encoded features')
+ self.parser.add_argument('--load_features', action='store_true', help='if specified, load precomputed feature maps')
+ self.parser.add_argument('--n_downsample_E', type=int, default=4, help='# of downsampling layers in encoder')
+ self.parser.add_argument('--nef', type=int, default=16, help='# of encoder filters in the first conv layer')
+ self.parser.add_argument('--n_clusters', type=int, default=10, help='number of clusters for features')
+
+ self.initialized = True
+
+ def parse(self, save=True):
+ if not self.initialized:
+ self.initialize()
+ self.opt = self.parser.parse_args()
+ self.opt.isTrain = self.isTrain # train or test
+
+ str_ids = self.opt.gpu_ids.split(',')
+ self.opt.gpu_ids = []
+ for str_id in str_ids:
+ id = int(str_id)
+ if id >= 0:
+ self.opt.gpu_ids.append(id)
+
+ # set gpu ids
+ if len(self.opt.gpu_ids) > 0:
+ torch.cuda.set_device(self.opt.gpu_ids[0])
+
+ args = vars(self.opt)
+
+ print('------------ Options -------------')
+ for k, v in sorted(args.items()):
+ print('%s: %s' % (str(k), str(v)))
+ print('-------------- End ----------------')
+
+ # save to the disk
+ expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.name)
+ util.mkdirs(expr_dir)
+ if save and not self.opt.continue_train:
+ file_name = os.path.join(expr_dir, 'opt.txt')
+ with open(file_name, 'wt') as opt_file:
+ opt_file.write('------------ Options -------------\n')
+ for k, v in sorted(args.items()):
+ opt_file.write('%s: %s\n' % (str(k), str(v)))
+ opt_file.write('-------------- End ----------------\n')
+ return self.opt