diff options
Diffstat (limited to 'encode_features.py')
| -rwxr-xr-x | encode_features.py | 57 |
1 files changed, 57 insertions, 0 deletions
diff --git a/encode_features.py b/encode_features.py new file mode 100755 index 0000000..0e97da8 --- /dev/null +++ b/encode_features.py @@ -0,0 +1,57 @@ +### Copyright (C) 2017 NVIDIA Corporation. All rights reserved.
+### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
+from options.train_options import TrainOptions
+from data.data_loader import CreateDataLoader
+from models.models import create_model
+import numpy as np
+import os, time
+import util.util as util
+from torch.autograd import Variable
+
+opt = TrainOptions().parse()
+opt.nThreads = 1
+opt.batchSize = 1
+opt.serial_batches = True
+opt.no_flip = True
+opt.instance_feat = True
+
+name = 'features'
+save_path = os.path.join(opt.checkpoints_dir, opt.name)
+
+############ Initialize #########
+data_loader = CreateDataLoader(opt)
+dataset = data_loader.load_data()
+dataset_size = len(data_loader)
+model = create_model(opt)
+
+########### Encode features ###########
+reencode = True
+if reencode:
+ features = {}
+ for label in range(opt.label_nc):
+ features[label] = np.zeros((0, opt.feat_num+1))
+ for i, data in enumerate(dataset):
+ feat = model.module.encode_features(data['image'], data['inst'])
+ for label in range(opt.label_nc):
+ features[label] = np.append(features[label], feat[label], axis=0)
+
+ print('%d / %d images' % (i+1, dataset_size))
+ save_name = os.path.join(save_path, name + '.npy')
+ np.save(save_name, features)
+
+############## Clustering ###########
+n_clusters = opt.n_clusters
+load_name = os.path.join(save_path, name + '.npy')
+features = np.load(load_name).item()
+from sklearn.cluster import KMeans
+centers = {}
+for label in range(opt.label_nc):
+ feat = features[label]
+ feat = feat[feat[:,-1] > 0.5, :-1]
+ if feat.shape[0]:
+ n_clusters = min(feat.shape[0], opt.n_clusters)
+ kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(feat)
+ centers[label] = kmeans.cluster_centers_
+save_name = os.path.join(save_path, name + '_clustered_%03d.npy' % opt.n_clusters)
+np.save(save_name, centers)
+print('saving to %s' % save_name)
\ No newline at end of file |
