diff options
| author | tingchunw <tingchunw@nvidia.com> | 2017-12-04 16:52:46 -0800 |
|---|---|---|
| committer | tingchunw <tingchunw@nvidia.com> | 2017-12-04 16:52:46 -0800 |
| commit | 9054cf9b0c327a5077fd0793abe178f400da3315 (patch) | |
| tree | 3c69c07bdcba86c47d8442648fd69c0434e04136 /options/train_options.py | |
| parent | f9e9999541d67a908a169cc88407675133130e1f (diff) | |
first commit
Diffstat (limited to 'options/train_options.py')
| -rwxr-xr-x | options/train_options.py | 36 |
1 files changed, 36 insertions, 0 deletions
diff --git a/options/train_options.py b/options/train_options.py new file mode 100755 index 0000000..9994a4a --- /dev/null +++ b/options/train_options.py @@ -0,0 +1,36 @@ +### Copyright (C) 2017 NVIDIA Corporation. All rights reserved. +### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). +from .base_options import BaseOptions + +class TrainOptions(BaseOptions): + def initialize(self): + BaseOptions.initialize(self) + # for displays + self.parser.add_argument('--display_freq', type=int, default=100, help='frequency of showing training results on screen') + self.parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console') + self.parser.add_argument('--save_latest_freq', type=int, default=1000, help='frequency of saving the latest results') + self.parser.add_argument('--save_epoch_freq', type=int, default=10, help='frequency of saving checkpoints at the end of epochs') + self.parser.add_argument('--no_html', action='store_true', help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/') + self.parser.add_argument('--debug', action='store_true', help='only do one epoch and displays at each iteration') + + # for training + self.parser.add_argument('--continue_train', action='store_true', help='continue training: load the latest model') + self.parser.add_argument('--load_pretrain', type=str, default='', help='load the pretrained model from the specified location') + self.parser.add_argument('--which_epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model') + self.parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc') + self.parser.add_argument('--niter', type=int, default=100, help='# of iter at starting learning rate') + self.parser.add_argument('--niter_decay', type=int, default=100, help='# of iter to linearly decay learning rate to zero') + self.parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam') + self.parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam') + + # for discriminators + self.parser.add_argument('--num_D', type=int, default=2, help='number of discriminators to use') + self.parser.add_argument('--n_layers_D', type=int, default=3, help='only used if which_model_netD==n_layers') + self.parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer') + self.parser.add_argument('--lambda_feat', type=float, default=10.0, help='weight for feature matching loss') + self.parser.add_argument('--no_ganFeat_loss', action='store_true', help='if specified, do *not* use discriminator feature matching loss') + self.parser.add_argument('--no_vgg_loss', action='store_true', help='if specified, do *not* use VGG feature matching loss') + self.parser.add_argument('--no_lsgan', action='store_true', help='do *not* use least square GAN, if false, use vanilla GAN') + self.parser.add_argument('--pool_size', type=int, default=0, help='the size of image buffer that stores previously generated images') + + self.isTrain = True |
