diff options
| author | Jules Laplace <julescarbon@gmail.com> | 2018-09-07 14:40:59 +0200 |
|---|---|---|
| committer | Jules Laplace <julescarbon@gmail.com> | 2018-09-07 14:40:59 +0200 |
| commit | 15efabd225f08921c4ffb83f488710ac7456f9d2 (patch) | |
| tree | 0bedeee2787017b1f641cd35c59c62d79b21808e /augment.py | |
| parent | de7d9fb18fcc8a43e2d365203904514e89dd414e (diff) | |
augment
Diffstat (limited to 'augment.py')
| -rwxr-xr-x | augment.py | 39 |
1 files changed, 25 insertions, 14 deletions
@@ -12,6 +12,7 @@ import util.util as util from util.visualizer import Visualizer from util import html import torch +import numpy as np from run_engine import run_trt_engine, run_onnx from datetime import datetime from PIL import Image, ImageOps @@ -50,7 +51,6 @@ def __make_power_2(img, base, method=Image.BICUBIC): return img return img.resize((w, h), method) - opt = TestOptions().parse(save=False) data_opt = DatasetOptions().parse(opt.unknown) opt.nThreads = 1 # test code only supports nThreads = 1 @@ -67,14 +67,21 @@ if data_opt.tag == '': else: tag = data_opt.tag -opt.render_dir = os.path.join(opt.results_dir, opt.name, opt.which_epoch) - -print('tag:', tag) -print('render_dir:', opt.render_dir) -util.mkdir(opt.render_dir) +if opt.current_epoch == 'latest': + iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt') + if os.path.exists(iter_path): + try: + current_epoch, epoch_iter = np.loadtxt(iter_path , delimiter=',', dtype=int) + except: + current_epoch, epoch_iter = 1, 0 + print('Resuming from epoch %d at iteration %d' % (current_epoch, epoch_iter)) + else: + current_epoch, epoch_iter = 1, 0 +else: + current_epoch = opt.current_epoch -data_loader = CreateDataLoader(opt) -dataset = data_loader.load_data() +epoch_id = "{:02d}_{:04d}_{:04d}".format(current_epoch, data_opt.augment_take, data_opt.augment_make) +opt.render_dir = os.path.join(opt.results_dir, opt.name, epoch_id) if not opt.engine and not opt.onnx: model = create_model(opt) @@ -97,6 +104,10 @@ if _len <= 0: transform = get_transform(opt) +print('tag:', tag) +print('render_dir:', opt.render_dir) +util.mkdir(opt.render_dir) + # add augment name for m in range(data_opt.augment_take): @@ -106,7 +117,7 @@ for m in range(data_opt.augment_take): for n in range(data_opt.augment_make): index = i + n if n == 0: - A_path = sequence[i] + A_path = sequence[index] if opt.verbose: print(A_path) A = Image.open(A_path) @@ -114,7 +125,7 @@ for m in range(data_opt.augment_take): else: if opt.verbose: print(A_path) - A_path = os.path.join(opt.render_dir, "recur_{:05d}_{:05d}.png".format(m, index)) + A_path = os.path.join(opt.render_dir, "recur_{}_{:05d}_{:05d}.png".format(epoch_id, m, index)) A = Image.open(A_path) A_tensor = transform(A.convert('RGB')) @@ -133,8 +144,8 @@ for m in range(data_opt.augment_take): minibatch = 1 generated = model.inference(data['label'], data['inst']) - tmp_path = os.path.join(opt.render_dir, "recur_{:05d}_{:05d}_tmp.png".format(m, index+1)) - next_path = os.path.join(opt.render_dir, "recur_{:05d}_{:05d}.png".format(m, index+1)) + tmp_path = os.path.join(opt.render_dir, "recur_{}_{:05d}_{:05d}_tmp.png".format(epoch_id, m, index+1)) + next_path = os.path.join(opt.render_dir, "recur_{}_{:05d}_{:05d}.png".format(epoch_id, m, index+1)) print('process image... %i' % index) im = util.tensor2im(generated.data[0]) @@ -142,8 +153,8 @@ for m in range(data_opt.augment_take): image_pil.save(tmp_path) os.rename(tmp_path, next_path) - frame_A = os.path.join("./datasets/", data_opt.sequence_name, "train_A", "recur_{:05d}_{:05d}.png".format(m, index+1)) - frame_B = os.path.join("./datasets/", data_opt.sequence_name, "train_B", "recur_{:05d}_{:05d}.png".format(m, index+1)) + frame_A = os.path.join("./datasets/", data_opt.sequence_name, "train_A", "recur_{}_{:05d}_{:05d}.png".format(epoch_id, m, index+1)) + frame_B = os.path.join("./datasets/", data_opt.sequence_name, "train_B", "recur_{}_{:05d}_{:05d}.png".format(epoch_id, m, index+1)) if os.path.exists(frame_A): os.unlink(frame_A) if os.path.exists(frame_B): |
