summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2018-09-05 11:58:03 +0200
committerJules Laplace <julescarbon@gmail.com>2018-09-05 11:58:03 +0200
commit0df8723fd140c893ec4177ffe2e53b9ce3db3b4e (patch)
treefff66ee63aaff689503969f6223dc90891ad224f
parentfd3198c0c799e7943f7f27758e97670535c94979 (diff)
augment script
-rw-r--r--augment.py12
-rw-r--r--options/dataset_options.py6
-rw-r--r--train_epoch.py125
3 files changed, 138 insertions, 5 deletions
diff --git a/augment.py b/augment.py
index 5edbc78..7f448d8 100644
--- a/augment.py
+++ b/augment.py
@@ -67,11 +67,12 @@ if data_opt.tag == '':
else:
tag = data_opt.tag
-opt.render_dir = render_dir = opt.results_dir + opt.name + "/" + tag + "/"
+if opt.render_dir == '':
+ opt.render_dir = os.path.join(opt.results_dir, opt.name, opt.which_epoch)
print('tag:', tag)
-print('render_dir:', render_dir)
-util.mkdir(render_dir)
+print('render_dir:', opt.render_dir)
+util.mkdir(opt.render_dir)
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
@@ -97,6 +98,8 @@ if _len <= 0:
transform = get_transform(opt)
+# add augment name
+
for m in range(data_opt.augment_take):
i = randint(0, _len)
index = i
@@ -108,7 +111,7 @@ for m in range(data_opt.augment_take):
A = Image.open(A_path)
A_tensor = transform(A.convert('RGB'))
else:
- A_path = os.path.join(self.opt.render_dir, "recur_{:05d}_{:05d}.png".format(m, index))
+ A_path = os.path.join(opt.render_dir, "recur_{:05d}_{:05d}.png".format(m, index))
A = Image.open(A_path)
A_tensor = transform(A.convert('RGB'))
B_path = sequence[index+1]
@@ -136,4 +139,3 @@ for m in range(data_opt.augment_take):
os.symlink(next_path, os.path.join("./datasets/", data_opt.sequence, "train_A", "recur_{:05d}_{:05d}.png".format(m, index+1)))
os.symlink(sequence[i+1], os.path.join("./datasets/", data_opt.sequence, "train_B", "recur_{:05d}_{:05d}.png".format(m, index+1)))
-
diff --git a/options/dataset_options.py b/options/dataset_options.py
index 29e07c6..93fbb6d 100644
--- a/options/dataset_options.py
+++ b/options/dataset_options.py
@@ -309,6 +309,12 @@ class DatasetOptions(BaseOptions):
help='number of recursive images to generate'
)
+ self.parser.add_argument(
+ '--augment-name',
+ type=str,
+ help='name to tag epoch'
+ )
+
### GRAYSCALE
self.parser.add_argument(
diff --git a/train_epoch.py b/train_epoch.py
new file mode 100644
index 0000000..223d150
--- /dev/null
+++ b/train_epoch.py
@@ -0,0 +1,125 @@
+### Copyright (C) 2017 NVIDIA Corporation. All rights reserved.
+### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
+import time
+from collections import OrderedDict
+from options.train_options import TrainOptions
+from data.data_loader import CreateDataLoader
+from models.models import create_model
+import util.util as util
+from util.visualizer import Visualizer
+import os
+import numpy as np
+import torch
+from torch.autograd import Variable
+
+opt = TrainOptions().parse()
+iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt')
+if opt.continue_train:
+ try:
+ start_epoch, epoch_iter = np.loadtxt(iter_path, delimiter=',', dtype=int)
+ except:
+ start_epoch, epoch_iter = 1, 0
+ print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter))
+else:
+ start_epoch, epoch_iter = 1, 0
+
+if opt.debug:
+ opt.display_freq = 1
+ opt.print_freq = 1
+ opt.niter = 1
+ opt.niter_decay = 0
+ opt.max_dataset_size = 10
+
+data_loader = CreateDataLoader(opt)
+dataset = data_loader.load_data()
+dataset_size = len(data_loader)
+print('#training images = %d' % dataset_size)
+
+model = create_model(opt)
+visualizer = Visualizer(opt)
+
+total_steps = (start_epoch-1) * dataset_size + epoch_iter
+
+display_delta = total_steps % opt.display_freq
+print_delta = total_steps % opt.print_freq
+save_delta = total_steps % opt.save_latest_freq
+
+print("{} {}".format(start_epoch, start_epoch + opt.niter + opt.niter_decay + 1))
+
+for epoch in range(start_epoch, start_epoch + opt.niter + opt.niter_decay + 1):
+ epoch_start_time = time.time()
+ if epoch != start_epoch:
+ epoch_iter = epoch_iter % dataset_size
+ for i, data in enumerate(dataset, start=epoch_iter):
+ iter_start_time = time.time()
+ total_steps += opt.batchSize
+ epoch_iter += opt.batchSize
+
+ # whether to collect output images
+ save_fake = total_steps % opt.display_freq == display_delta
+
+ ############## Forward Pass ######################
+ losses, generated = model(Variable(data['label']), Variable(data['inst']),
+ Variable(data['image']), Variable(data['feat']), infer=save_fake)
+
+ # sum per device losses
+ losses = [ torch.mean(x) if not isinstance(x, int) else x for x in losses ]
+ loss_dict = dict(zip(model.module.loss_names, losses))
+
+ # calculate final loss scalar
+ loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5
+ loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat',0) + loss_dict.get('G_VGG',0)
+
+ ############### Backward Pass ####################
+ # update generator weights
+ model.module.optimizer_G.zero_grad()
+ loss_G.backward()
+ model.module.optimizer_G.step()
+
+ # update discriminator weights
+ model.module.optimizer_D.zero_grad()
+ loss_D.backward()
+ model.module.optimizer_D.step()
+
+ #call(["nvidia-smi", "--format=csv", "--query-gpu=memory.used,memory.free"])
+
+ ############## Display results and errors ##########
+ ### print out errors
+ if total_steps % opt.print_freq == print_delta:
+ errors = {k: v.data[0] if not isinstance(v, int) else v for k, v in loss_dict.items()}
+ t = (time.time() - iter_start_time) / opt.batchSize
+ visualizer.print_current_errors(epoch, epoch_iter, errors, t)
+ visualizer.plot_current_errors(errors, total_steps)
+
+ ### display output images
+ if save_fake:
+ visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)),
+ ('synthesized_image', util.tensor2im(generated.data[0])),
+ ('real_image', util.tensor2im(data['image'][0]))])
+ visualizer.display_current_results(visuals, epoch, total_steps)
+
+ ### save latest model
+ if total_steps % opt.save_latest_freq == save_delta:
+ print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps))
+ model.module.save('latest')
+ np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d')
+
+ # end of epoch
+ iter_end_time = time.time()
+ print('End of epoch %d / %d \t Time Taken: %d sec' %
+ (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
+
+ ### save model for this epoch
+ if epoch % opt.save_epoch_freq == 0:
+ print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))
+ model.module.save('latest')
+ model.module.save(epoch)
+ np.savetxt(iter_path, (epoch+1, 0), delimiter=',', fmt='%d')
+
+ ### instead of only training the local enhancer, train the entire network after certain iterations
+ if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global):
+ model.module.update_fixed_params()
+
+ ### linearly decay learning rate after certain iterations
+ if epoch > opt.niter:
+ model.module.update_learning_rate()