diff options
| author | Jules Laplace <julescarbon@gmail.com> | 2018-09-05 11:58:03 +0200 |
|---|---|---|
| committer | Jules Laplace <julescarbon@gmail.com> | 2018-09-05 11:58:03 +0200 |
| commit | 0df8723fd140c893ec4177ffe2e53b9ce3db3b4e (patch) | |
| tree | fff66ee63aaff689503969f6223dc90891ad224f | |
| parent | fd3198c0c799e7943f7f27758e97670535c94979 (diff) | |
augment script
| -rw-r--r-- | augment.py | 12 | ||||
| -rw-r--r-- | options/dataset_options.py | 6 | ||||
| -rw-r--r-- | train_epoch.py | 125 |
3 files changed, 138 insertions, 5 deletions
@@ -67,11 +67,12 @@ if data_opt.tag == '': else: tag = data_opt.tag -opt.render_dir = render_dir = opt.results_dir + opt.name + "/" + tag + "/" +if opt.render_dir == '': + opt.render_dir = os.path.join(opt.results_dir, opt.name, opt.which_epoch) print('tag:', tag) -print('render_dir:', render_dir) -util.mkdir(render_dir) +print('render_dir:', opt.render_dir) +util.mkdir(opt.render_dir) data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() @@ -97,6 +98,8 @@ if _len <= 0: transform = get_transform(opt) +# add augment name + for m in range(data_opt.augment_take): i = randint(0, _len) index = i @@ -108,7 +111,7 @@ for m in range(data_opt.augment_take): A = Image.open(A_path) A_tensor = transform(A.convert('RGB')) else: - A_path = os.path.join(self.opt.render_dir, "recur_{:05d}_{:05d}.png".format(m, index)) + A_path = os.path.join(opt.render_dir, "recur_{:05d}_{:05d}.png".format(m, index)) A = Image.open(A_path) A_tensor = transform(A.convert('RGB')) B_path = sequence[index+1] @@ -136,4 +139,3 @@ for m in range(data_opt.augment_take): os.symlink(next_path, os.path.join("./datasets/", data_opt.sequence, "train_A", "recur_{:05d}_{:05d}.png".format(m, index+1))) os.symlink(sequence[i+1], os.path.join("./datasets/", data_opt.sequence, "train_B", "recur_{:05d}_{:05d}.png".format(m, index+1))) - diff --git a/options/dataset_options.py b/options/dataset_options.py index 29e07c6..93fbb6d 100644 --- a/options/dataset_options.py +++ b/options/dataset_options.py @@ -309,6 +309,12 @@ class DatasetOptions(BaseOptions): help='number of recursive images to generate' ) + self.parser.add_argument( + '--augment-name', + type=str, + help='name to tag epoch' + ) + ### GRAYSCALE self.parser.add_argument( diff --git a/train_epoch.py b/train_epoch.py new file mode 100644 index 0000000..223d150 --- /dev/null +++ b/train_epoch.py @@ -0,0 +1,125 @@ +### Copyright (C) 2017 NVIDIA Corporation. All rights reserved. +### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). +import time +from collections import OrderedDict +from options.train_options import TrainOptions +from data.data_loader import CreateDataLoader +from models.models import create_model +import util.util as util +from util.visualizer import Visualizer +import os +import numpy as np +import torch +from torch.autograd import Variable + +opt = TrainOptions().parse() +iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt') +if opt.continue_train: + try: + start_epoch, epoch_iter = np.loadtxt(iter_path, delimiter=',', dtype=int) + except: + start_epoch, epoch_iter = 1, 0 + print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter)) +else: + start_epoch, epoch_iter = 1, 0 + +if opt.debug: + opt.display_freq = 1 + opt.print_freq = 1 + opt.niter = 1 + opt.niter_decay = 0 + opt.max_dataset_size = 10 + +data_loader = CreateDataLoader(opt) +dataset = data_loader.load_data() +dataset_size = len(data_loader) +print('#training images = %d' % dataset_size) + +model = create_model(opt) +visualizer = Visualizer(opt) + +total_steps = (start_epoch-1) * dataset_size + epoch_iter + +display_delta = total_steps % opt.display_freq +print_delta = total_steps % opt.print_freq +save_delta = total_steps % opt.save_latest_freq + +print("{} {}".format(start_epoch, start_epoch + opt.niter + opt.niter_decay + 1)) + +for epoch in range(start_epoch, start_epoch + opt.niter + opt.niter_decay + 1): + epoch_start_time = time.time() + if epoch != start_epoch: + epoch_iter = epoch_iter % dataset_size + for i, data in enumerate(dataset, start=epoch_iter): + iter_start_time = time.time() + total_steps += opt.batchSize + epoch_iter += opt.batchSize + + # whether to collect output images + save_fake = total_steps % opt.display_freq == display_delta + + ############## Forward Pass ###################### + losses, generated = model(Variable(data['label']), Variable(data['inst']), + Variable(data['image']), Variable(data['feat']), infer=save_fake) + + # sum per device losses + losses = [ torch.mean(x) if not isinstance(x, int) else x for x in losses ] + loss_dict = dict(zip(model.module.loss_names, losses)) + + # calculate final loss scalar + loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5 + loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat',0) + loss_dict.get('G_VGG',0) + + ############### Backward Pass #################### + # update generator weights + model.module.optimizer_G.zero_grad() + loss_G.backward() + model.module.optimizer_G.step() + + # update discriminator weights + model.module.optimizer_D.zero_grad() + loss_D.backward() + model.module.optimizer_D.step() + + #call(["nvidia-smi", "--format=csv", "--query-gpu=memory.used,memory.free"]) + + ############## Display results and errors ########## + ### print out errors + if total_steps % opt.print_freq == print_delta: + errors = {k: v.data[0] if not isinstance(v, int) else v for k, v in loss_dict.items()} + t = (time.time() - iter_start_time) / opt.batchSize + visualizer.print_current_errors(epoch, epoch_iter, errors, t) + visualizer.plot_current_errors(errors, total_steps) + + ### display output images + if save_fake: + visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)), + ('synthesized_image', util.tensor2im(generated.data[0])), + ('real_image', util.tensor2im(data['image'][0]))]) + visualizer.display_current_results(visuals, epoch, total_steps) + + ### save latest model + if total_steps % opt.save_latest_freq == save_delta: + print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps)) + model.module.save('latest') + np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d') + + # end of epoch + iter_end_time = time.time() + print('End of epoch %d / %d \t Time Taken: %d sec' % + (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) + + ### save model for this epoch + if epoch % opt.save_epoch_freq == 0: + print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps)) + model.module.save('latest') + model.module.save(epoch) + np.savetxt(iter_path, (epoch+1, 0), delimiter=',', fmt='%d') + + ### instead of only training the local enhancer, train the entire network after certain iterations + if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global): + model.module.update_fixed_params() + + ### linearly decay learning rate after certain iterations + if epoch > opt.niter: + model.module.update_learning_rate() |
