summaryrefslogtreecommitdiff
path: root/util/util.py
blob: 781239f7ce76d6f259db29da9bfc2a01b83012af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from __future__ import print_function
import torch
import numpy as np
from PIL import Image
import inspect, re
import numpy as np
import os
import collections

# Converts a Tensor into a Numpy array
# |imtype|: the desired type of the converted numpy array
def tensor2im(image_tensor, imtype=np.uint8):
    image_numpy = image_tensor[0].cpu().float().numpy()
    image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
    return image_numpy.astype(imtype)


def diagnose_network(net, name='network'):
    mean = 0.0
    count = 0
    for param in net.parameters():
        if param.grad is not None:
            mean += torch.mean(torch.abs(param.grad.data))
            count += 1
    if count > 0:
        mean = mean / count
    print(name)
    print(mean)


def save_image(image_numpy, image_path):
    image_pil = Image.fromarray(image_numpy)
    image_pil.save(image_path)

def info(object, spacing=10, collapse=1):
    """Print methods and doc strings.
    Takes module, class, list, dictionary, or string."""
    methodList = [e for e in dir(object) if isinstance(getattr(object, e), collections.Callable)]
    processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)
    print( "\n".join(["%s %s" %
                     (method.ljust(spacing),
                      processFunc(str(getattr(object, method).__doc__)))
                     for method in methodList]) )

def varname(p):
    for line in inspect.getframeinfo(inspect.currentframe().f_back)[3]:
        m = re.search(r'\bvarname\s*\(\s*([A-Za-z_][A-Za-z0-9_]*)\s*\)', line)
        if m:
            return m.group(1)

def print_numpy(x, val=True, shp=False):
    x = x.astype(np.float64)
    if shp:
        print('shape,', x.shape)
    if val:
        x = x.flatten()
        print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % (
            np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)))


def mkdirs(paths):
    if isinstance(paths, list) and not isinstance(paths, str):
        for path in paths:
            mkdir(path)
    else:
        mkdir(paths)


def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)