summaryrefslogtreecommitdiff
path: root/test.py
blob: e14d228a38b4df1794972fb94e8ac9f2cc5df150 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
from options.test_options import TestOptions
from data import CreateRecursiveDataLoader
from models import create_model
from util.visualizer import Visualizer
from util.util import mkdirs
from util import html
from shutil import move, copyfile

import subprocess
from time import sleep


if __name__ == '__main__':
    opt = TestOptions().parse()
    opt.nThreads = 1   # test code only supports nThreads = 1
    opt.batchSize = 1  # test code only supports batchSize = 1
    opt.serial_batches = True  # no shuffle
    opt.no_flip = True  # no flip
    opt.experiment = opt.start_img.split("/")[-1].split(".")[0]

    render_dir = opt.results_dir + opt.name + "/exp:" + opt.experiment + "/"

    mkdirs(render_dir)
    copyfile(opt.start_img, render_dir + "frame_00000.png")

    # data_loader = CreateRecursiveDataLoader(opt)
    # dataset = data_loader.load_data()
    # ds = dataset.dataset
    # model = create_model(opt)
    # visualizer = Visualizer(opt)
    # # create website
    # web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
    # webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
    # # test
    # print(dataset.name())
    # for i, data in enumerate(data_loader):
    #     if i >= opt.how_many:
    #         break
    #     model.set_input(data)
    #     model.test()
    #     visuals = model.get_current_visuals()
    #     img_path = model.get_image_paths()
    #     print('%04d: process image... %s' % (i, img_path))
    #     ims = visualizer.save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio)
    #     if dataset.name() == 'RecursiveDatasetDataLoader':
    #         last_image = opt.results_dir + opt.name + "/test_latest/images/" + ims[1]
    #         next_image = render_dir + "frame_{:05d}.png".format(i+1)
    #         move(last_image, next_image)

    # webpage.save()

    cmd = ("/usr/bin/ffmpeg", "-i", render_dir + "frame_%05d.png", "-c:v", "libx264", "-vf", "fps=30", "-pix_fmt", "yuv420p", render_dir + opt.name + "_" + opt.experiment + ".mp4")
    process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
    output, error = process.communicate()

    cmd = ("scp", render_dir + opt.name + "_" + opt.experiment + ".mp4", "jules@asdf.us:asdf/neural/")
    process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
    output, error = process.communicate()

    print("\n")
    print("https://asdf.us/neural/" + opt.name + "_" + opt.experiment + ".mp4")