summaryrefslogtreecommitdiff
path: root/test-mogrify.py
blob: 373051ad42b34a7f5352cd105794cefb1cc6f195 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
from options.test_options import TestOptions
from options.dataset_options import DatasetOptions
from data import CreateRecursiveDataLoader
from models import create_model
from util.visualizer import Visualizer
from util.util import mkdirs, crop_image
from util import html
from shutil import move, copyfile
from PIL import Image, ImageOps
from skimage.transform import resize
from scipy.misc import imresize
from shutil import copyfile, rmtree
import numpy as np
import cv2
from datetime import datetime
import re

import subprocess
from time import sleep

if __name__ == '__main__':
  opt = TestOptions().parse()
  data_opt = DatasetOptions().parse(opt.unknown)
  opt.nThreads = 1   # test code only supports nThreads = 1
  opt.batchSize = 1  # test code only supports batchSize = 1
  opt.serial_batches = True  # no shuffle
  opt.no_flip = True  # no flip
  # opt.experiment = data_opt.experiment # opt.start_img.split("/")[-1].split(".")[0]

  d = datetime.now()
  tag = "{}_{}_{}".format(
      opt.name, opt.experiment,
      d.strftime('%Y%m%d%H%M'))

  opt.tag = tag # = "pcfade___201805150250"

  opt.render_dir = render_dir = opt.results_dir + opt.name + "/" + tag + "/"
  A_offset = 0
  A_im = None
  A_dir = None

  print("create render_dir: {}".format(render_dir))
  if os.path.exists(render_dir):
      rmtree(render_dir)
  mkdirs(render_dir)

  # cmd = ("convert", opt.start_img, '-canny', '0x1+10%+30%', render_dir + "frame_00000.png")
  # process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
  # output, error = process.communicate()

  def load_first_frame():
    start_img_path = os.path.join(render_dir, "frame_00000.png")
    if data_opt.just_copy:
      copyfile(opt.start_img, start_img_path)
    else:
      print("preload {}".format(opt.start_img))
      A_img = Image.open(opt.start_img).convert('RGB')
      A_im = np.asarray(A_img)
      A = process_image(A_im)
      cv2.imwrite(start_img_path, A)

    numz = re.findall(r'\d+', os.path.basename(opt.start_img))
    if len(numz) > 0:
      A_offset = int(numz[0])
      if A_offset:
        print(">> starting offset: {}".format(A_offset))
        A_dir = opt.start_img.replace(numz[0], "{:05d}")
      else:
        print("Sequence not found")

  def process_image(im):
    img = im[:, :, ::-1].copy()

    if data_opt.clahe is True:
      lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
      l, a, b = cv2.split(lab)
      clahe = cv2.createCLAHE(clipLimit=data_opt.clip_limit, tileGridSize=(8,8))
      l = clahe.apply(l)
      limg = cv2.merge((l,a,b))
      img = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)

    if data_opt.posterize is True:
      img = cv2.pyrMeanShiftFiltering(img, data_opt.spatial_window, data_opt.color_window)
    if data_opt.grayscale is True:
      img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    if data_opt.blur is True:
      img = cv2.GaussianBlur(img, (data_opt.blur_radius, data_opt.blur_radius), data_opt.blur_sigma)
    if data_opt.canny is True:
      img = cv2.Canny(img, data_opt.canny_lo, data_opt.canny_hi)

    return img

  load_first_frame()

  data_loader = CreateRecursiveDataLoader(opt)
  dataset = data_loader.load_data()
  ds = dataset.dataset
  model = create_model(opt)
  visualizer = Visualizer(opt)
  # create website
  # web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
  # webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
  # test
  last_im = None
  for i, data in enumerate(data_loader):
    if i >= opt.how_many:
        break
    model.set_input(data)
    model.test()
    visuals = model.get_current_visuals()
    img_path = model.get_image_paths()

    if (i % 20) == 0:
      print('%04d: process image... %s' % (i, img_path))
    # ims = visualizer.save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio)

    im = visuals['fake_B']
    tmp_path = render_dir + "frame_{:05d}_tmp.png".format(i+1)
    edges_path = render_dir + "frame_{:05d}.png".format(i+1)
    render_path = render_dir + "ren_{:05d}.png".format(i+1)
    if A_dir is not None:
      sequence_path = A_dir.format(A_offset+i+1)
    # A_offset

    # save rendered image
    image_pil = Image.fromarray(im, mode='RGB')
    image_pil.save(tmp_path)
    os.rename(tmp_path, render_path)

    if dataset.name() == 'RecursiveDatasetDataLoader':
      if data_opt.recursive and last_im is not None:
        tmp_im = im.copy()

        if data_opt.sequence and A_dir is not None:
          A_img = Image.open(sequence_path).convert('RGB')
          A_im = np.asarray(A_img)
          frac_a = data_opt.recursive_frac
          frac_b = data_opt.sequence_frac
          frac_c = 1.0 - frac_a - frac_b
          array_a = np.multiply(last_im.astype('float64'), frac_a)
          array_b = np.multiply(A_im.astype('float64'), frac_b)
          array_c = np.multiply(im.astype('float64'), frac_c)
          comb_ab = np.add(array_a, array_b)
          comb_abc = np.add(array_ab, array_c)
          im = comb_abc.astype('uint8')

        else:
          frac_a = data_opt.recursive_frac
          frac_b = 1.0 - frac_a
          array_a = np.multiply(last_im.astype('float64'), frac_a)
          array_b = np.multiply(im.astype('float64'), frac_b)
          im = np.add(array_a, array_b).astype('uint8')

        if data_opt.recurse_roll != 0:
          last_im = np.roll(tmp_im, data_opt.recurse_roll, axis=data_opt.recurse_roll_axis)
        else:
          last_im = im.copy().astype('uint8')

      else:
        last_im = im.copy().astype('uint8')
        tmp_im = im.copy().astype('uint8')
        #print(im.shape, im.dtype)

      # image_pil = Image.fromarray(im, mode='RGB')
      # im = np.asarray(image_pil).astype('uint8')
      #print(im.shape, im.dtype)

      # src_img = im[:, :, ::-1].copy()
      img = process_image(im)

      cv2.imwrite(tmp_path, img)
      os.rename(tmp_path, edges_path)

  # webpage.save()

  # os.remove(render_dir + "frame_00000.png")

  print(opt.render_dir)
  video_fn = tag + "_mogrify.mp4"

  cmd = ("ffmpeg", "-i", render_dir + "ren_%05d.png", "-y", "-c:v", "libx264", "-vf", "fps=30", "-pix_fmt", "yuv420p", "-s", "456x256", render_dir + video_fn)
  process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
  output, error = process.communicate()

  print("________")

  cmd = ("scp", render_dir + video_fn, "jules@asdf.us:asdf/neural/")
  process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
  output, error = process.communicate()

  print("https://asdf.us/neural/" + video_fn)