blob: aef1118f1897f043993f3ed3919518371b1d5cae (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
dataset="woodcanny"
#/home/lens/Desktop/dataset-random.pl
#python datasets/combine_A_and_B.py \
# --fold_A "$HOME/Desktop/thumbs/$dataset/A" \
# --fold_B "$HOME/Desktop/thumbs/$dataset/B" \
# --fold_AB "./datasets/$dataset/"
python train.py \
--dataroot "./datasets/$dataset" \
--name "$dataset" \
--model pix2pix \
--loadSize 276 \
--fineSize 256 \
--which_model_netG unet_256 \
--which_direction AtoB \
--lambda_B 100 \
--dataset_mode aligned \
--which_epoch latest \
--continue_train \
--no_lsgan --norm batch --pool_size 0
python canny-cv.py \
--dataroot /home/ubuntu/Desktop/thumbs/wood/B/train/ \
--name woodcanny \
--start_img /home/ubuntu/Desktop/thumbs/wood/B/train/frame_00100.png \
--loadSize 256 \
--fineSize 256 \
--how_many 200 \
--model test \
--which_model_netG unet_256 \
--which_direction AtoB \
--dataset_mode recursive \
--norm batch
python train.py \
--dataroot "./datasets/$dataset" \
--name "$dataset" \
--model pix2pix \
--loadSize 276 \
--fineSize 256 \
--which_model_netG unet_256 \
--which_direction AtoB \
--lambda_B 100 \
--dataset_mode aligned \
--which_epoch latest \
--continue_train \
--no_lsgan --norm batch --pool_size 0
python canny-cv.py \
--dataroot /home/ubuntu/Desktop/thumbs/wood/B/train/ \
--name woodcanny \
--start_img /home/ubuntu/Desktop/thumbs/wood/B/train/frame_00100.png \
--loadSize 256 \
--fineSize 256 \
--how_many 200 \
--model test \
--which_model_netG unet_256 \
--which_direction AtoB \
--dataset_mode recursive \
--norm batch
python train.py \
--dataroot "./datasets/$dataset" \
--name "$dataset" \
--model pix2pix \
--loadSize 276 \
--fineSize 256 \
--which_model_netG unet_256 \
--which_direction AtoB \
--lambda_B 100 \
--dataset_mode aligned \
--which_epoch latest \
--continue_train \
--no_lsgan --norm batch --pool_size 0
python canny-cv.py \
--dataroot /home/ubuntu/Desktop/thumbs/wood/B/train/ \
--name woodcanny \
--start_img /home/ubuntu/Desktop/thumbs/wood/B/train/frame_00100.png \
--loadSize 256 \
--fineSize 256 \
--how_many 200 \
--model test \
--which_model_netG unet_256 \
--which_direction AtoB \
--dataset_mode recursive \
--norm batch
# --aspect_ratio 1.777777 \
|