summaryrefslogtreecommitdiff
path: root/options/train_options.py
blob: e7d4b3a4b56a736bf9e565fef84a943d11b7b469 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from .base_options import BaseOptions

class TrainOptions(BaseOptions):
    def initialize(self):
        BaseOptions.initialize(self)
        self.parser.add_argument('--display_freq', type=int, default=100, help='frequency of showing training results on screen')
        self.parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console')
        self.parser.add_argument('--save_latest_freq', type=int, default=5000, help='frequency of saving the latest results')
        self.parser.add_argument('--save_epoch_freq', type=int, default=5, help='frequency of saving checkpoints at the end of epochs')
        self.parser.add_argument('--save_display_freq', type=int, default=2500, help='save the current display of results every save_display_freq_iterations')
        self.parser.add_argument('--continue_train', action='store_true', help='if continue training, load the latest model')
        self.parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc')
        self.parser.add_argument('--which_epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model')
        self.parser.add_argument('--niter', type=int, default=100, help='# of iter at starting learning rate')
        self.parser.add_argument('--niter_decay', type=int, default=100, help='# of iter to linearly decay learning rate to zero')
        self.parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam')
        self.parser.add_argument('--ntrain', type=int, default=float("inf"), help='# of examples per epoch.')
        self.parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam')
        self.parser.add_argument('--no_lsgan', action='store_true', help='if true, do *not* use least square GAN, if false, use vanilla GAN')
        self.parser.add_argument('--lambda_A', type=float, default=10.0, help='weight for cycle loss (A -> B -> A)')
        self.parser.add_argument('--lambda_B', type=float, default=10.0, help='weight for cycle loss (B -> A -> B)')
        self.parser.add_argument('--pool_size', type=int, default=0, help='the size of image buffer that stores previously generated images')
        self.parser.add_argument('--preprocessing', type=str, default='resize_and_crop', help='resizing/cropping strategy')
        self.isTrain = True