1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
|
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
###############################################################################
# Functions
###############################################################################
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm2d') != -1 or classname.find('InstanceNormalization') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def define_G(input_nc, output_nc, ngf, which_model_netG, norm, use_dropout=False, gpu_ids=[]):
netG = None
use_gpu = len(gpu_ids) > 0
if norm == 'batch':
norm_layer = nn.BatchNorm2d
elif norm == 'instance':
norm_layer = InstanceNormalization
else:
print('normalization layer [%s] is not found' % norm)
if use_gpu:
assert(torch.cuda.is_available())
if which_model_netG == 'resnet_9blocks':
netG = ResnetGenerator(input_nc, output_nc, ngf, norm_layer, use_dropout=use_dropout, n_blocks=9, gpu_ids=gpu_ids)
elif which_model_netG == 'resnet_6blocks':
netG = ResnetGenerator(input_nc, output_nc, ngf, norm_layer, use_dropout=use_dropout, n_blocks=6, gpu_ids=gpu_ids)
elif which_model_netG == 'unet_128':
netG = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer, use_dropout=use_dropout, gpu_ids=gpu_ids)
elif which_model_netG == 'unet_256':
netG = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer, use_dropout=use_dropout, gpu_ids=gpu_ids)
else:
print('Generator model name [%s] is not recognized' % which_model_netG)
if len(gpu_ids) > 0:
netG.cuda(device_id=gpu_ids[0])
netG.apply(weights_init)
return netG
def define_D(input_nc, ndf, which_model_netD,
n_layers_D=3, use_sigmoid=False, gpu_ids=[]):
netD = None
use_gpu = len(gpu_ids) > 0
if use_gpu:
assert(torch.cuda.is_available())
if which_model_netD == 'basic':
netD = define_D(input_nc, ndf, 'n_layers', use_sigmoid=use_sigmoid, gpu_ids=gpu_ids)
elif which_model_netD == 'n_layers':
netD = NLayerDiscriminator(input_nc, ndf, n_layers_D, use_sigmoid, gpu_ids=gpu_ids)
else:
print('Discriminator model name [%s] is not recognized' %
which_model_netD)
if use_gpu:
netD.cuda(device_id=gpu_ids[0])
netD.apply(weights_init)
return netD
def print_network(net):
num_params = 0
for param in net.parameters():
num_params += param.numel()
print(net)
print('Total number of parameters: %d' % num_params)
##############################################################################
# Classes
##############################################################################
# Defines the GAN loss which uses either LSGAN or the regular GAN.
# When LSGAN is used, it is basically same as MSELoss,
# but it abstracts away the need to create the target label tensor
# that has the same size as the input
class GANLoss(nn.Module):
def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0,
tensor=torch.FloatTensor):
super(GANLoss, self).__init__()
self.real_label = target_real_label
self.fake_label = target_fake_label
self.real_label_var = None
self.fake_label_var = None
self.Tensor = tensor
if use_lsgan:
self.loss = nn.MSELoss()
else:
self.loss = nn.BCELoss()
def get_target_tensor(self, input, target_is_real):
target_tensor = None
if target_is_real:
create_label = ((self.real_label_var is None) or
(self.real_label_var.numel() != input.numel()))
if create_label:
real_tensor = self.Tensor(input.size()).fill_(self.real_label)
self.real_label_var = Variable(real_tensor, requires_grad=False)
target_tensor = self.real_label_var
else:
create_label = ((self.fake_label_var is None) or
(self.fake_label_var.numel() != input.numel()))
if create_label:
fake_tensor = self.Tensor(input.size()).fill_(self.fake_label)
self.fake_label_var = Variable(fake_tensor, requires_grad=False)
target_tensor = self.fake_label_var
return target_tensor
def __call__(self, input, target_is_real):
target_tensor = self.get_target_tensor(input, target_is_real)
return self.loss(input, target_tensor)
# Defines the generator that consists of Resnet blocks between a few
# downsampling/upsampling operations.
# Code and idea originally from Justin Johnson's architecture.
# https://github.com/jcjohnson/fast-neural-style/
class ResnetGenerator(nn.Module):
def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, gpu_ids=[]):
assert(n_blocks >= 0)
super(ResnetGenerator, self).__init__()
self.input_nc = input_nc
self.output_nc = output_nc
self.ngf = ngf
self.gpu_ids = gpu_ids
model = [nn.Conv2d(input_nc, ngf, kernel_size=7, padding=3),
norm_layer(ngf),
nn.ReLU(True)]
n_downsampling = 2
for i in range(n_downsampling):
mult = 2**i
model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3,
stride=2, padding=1),
norm_layer(ngf * mult * 2),
nn.ReLU(True)]
mult = 2**n_downsampling
for i in range(n_blocks):
model += [ResnetBlock(ngf * mult, 'zero', norm_layer=norm_layer, use_dropout=use_dropout)]
for i in range(n_downsampling):
mult = 2**(n_downsampling - i)
model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2),
kernel_size=3, stride=2,
padding=1, output_padding=1),
norm_layer(int(ngf * mult / 2)),
nn.ReLU(True)]
model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=3)]
model += [nn.Tanh()]
self.model = nn.Sequential(*model)
def forward(self, input):
if self.gpu_ids and isinstance(input.data, torch.cuda.FloatTensor):
return nn.parallel.data_parallel(self.model, input, self.gpu_ids)
else:
return self.model(input)
# Define a resnet block
class ResnetBlock(nn.Module):
def __init__(self, dim, padding_type, norm_layer, use_dropout):
super(ResnetBlock, self).__init__()
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout)
def build_conv_block(self, dim, padding_type, norm_layer, use_dropout):
conv_block = []
p = 0
# TODO: support padding types
assert(padding_type == 'zero')
p = 1
# TODO: InstanceNorm
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
norm_layer(dim),
nn.ReLU(True)]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x):
out = x + self.conv_block(x)
return out
# Defines the Unet generator.
# |num_downs|: number of downsamplings in UNet. For example,
# if |num_downs| == 7, image of size 128x128 will become of size 1x1
# at the bottleneck
class UnetGenerator(nn.Module):
def __init__(self, input_nc, output_nc, num_downs, ngf=64,
norm_layer=nn.BatchNorm2d, use_dropout=False, gpu_ids=[]):
super(UnetGenerator, self).__init__()
self.gpu_ids = gpu_ids
# currently support only input_nc == output_nc
assert(input_nc == output_nc)
# construct unet structure
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, innermost=True)
for i in range(num_downs - 5):
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, unet_block, use_dropout=use_dropout)
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, unet_block)
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, unet_block)
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, unet_block)
unet_block = UnetSkipConnectionBlock(output_nc, ngf, unet_block, outermost=True)
self.model = unet_block
def forward(self, input):
if self.gpu_ids and isinstance(input.data, torch.cuda.FloatTensor):
return nn.parallel.data_parallel(self.model, input, self.gpu_ids)
else:
return self.model(input)
# Defines the submodule with skip connection.
# X -------------------identity---------------------- X
# |-- downsampling -- |submodule| -- upsampling --|
class UnetSkipConnectionBlock(nn.Module):
def __init__(self, outer_nc, inner_nc,
submodule=None, outermost=False, innermost=False, use_dropout=False):
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
downconv = nn.Conv2d(outer_nc, inner_nc, kernel_size=4,
stride=2, padding=1)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = nn.BatchNorm2d(inner_nc)
uprelu = nn.ReLU(True)
upnorm = nn.BatchNorm2d(outer_nc)
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
if use_dropout:
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else:
return torch.cat([self.model(x), x], 1)
# Defines the PatchGAN discriminator with the specified arguments.
class NLayerDiscriminator(nn.Module):
def __init__(self, input_nc, ndf=64, n_layers=3, use_sigmoid=False, gpu_ids=[]):
super(NLayerDiscriminator, self).__init__()
self.gpu_ids = gpu_ids
kw = 4
padw = int(np.ceil((kw-1)/2))
sequence = [
nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
nn.LeakyReLU(0.2, True)
]
nf_mult = 1
nf_mult_prev = 1
for n in range(1, n_layers):
nf_mult_prev = nf_mult
nf_mult = min(2**n, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult,
kernel_size=kw, stride=2, padding=padw),
# TODO: use InstanceNorm
nn.BatchNorm2d(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
nf_mult_prev = nf_mult
nf_mult = min(2**n_layers, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult,
kernel_size=kw, stride=1, padding=padw),
# TODO: useInstanceNorm
nn.BatchNorm2d(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]
if use_sigmoid:
sequence += [nn.Sigmoid()]
self.model = nn.Sequential(*sequence)
def forward(self, input):
if len(self.gpu_ids) and isinstance(input.data, torch.cuda.FloatTensor):
return nn.parallel.data_parallel(self.model, input, self.gpu_ids)
else:
return self.model(input)
# Instance Normalization layer from
# https://github.com/darkstar112358/fast-neural-style
class InstanceNormalization(torch.nn.Module):
"""InstanceNormalization
Improves convergence of neural-style.
ref: https://arxiv.org/pdf/1607.08022.pdf
"""
def __init__(self, dim, eps=1e-5):
super(InstanceNormalization, self).__init__()
self.weight = nn.Parameter(torch.FloatTensor(dim))
self.bias = nn.Parameter(torch.FloatTensor(dim))
self.eps = eps
self._reset_parameters()
def _reset_parameters(self):
self.weight.data.uniform_()
self.bias.data.zero_()
def forward(self, x):
n = x.size(2) * x.size(3)
t = x.view(x.size(0), x.size(1), n)
mean = torch.mean(t, 2).unsqueeze(2).expand_as(x)
# Calculate the biased var. torch.var returns unbiased var
var = torch.var(t, 2).unsqueeze(2).expand_as(x) * ((n - 1) / float(n))
scale_broadcast = self.weight.unsqueeze(1).unsqueeze(1).unsqueeze(0)
scale_broadcast = scale_broadcast.expand_as(x)
shift_broadcast = self.bias.unsqueeze(1).unsqueeze(1).unsqueeze(0)
shift_broadcast = shift_broadcast.expand_as(x)
out = (x - mean) / torch.sqrt(var + self.eps)
out = out * scale_broadcast + shift_broadcast
return out
|