summaryrefslogtreecommitdiff
path: root/data/aligned_dataset.py
blob: f153f26c58f92396b7f77d7d5d8484cc0ab33f35 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os.path
import random
import torchvision.transforms as transforms
import torch
from data.base_dataset import BaseDataset
from data.image_folder import make_dataset
from PIL import Image


class AlignedDataset(BaseDataset):
    def initialize(self, opt):
        self.opt = opt
        self.root = opt.dataroot
        self.dir_AB = os.path.join(opt.dataroot, opt.phase)
        self.AB_paths = sorted(make_dataset(self.dir_AB))
        assert(opt.resize_or_crop == 'resize_and_crop')

    def __getitem__(self, index):
        AB_path = self.AB_paths[index]
        AB = Image.open(AB_path).convert('RGB')
        w, h = AB.size
        w2 = int(w / 2)
        A = AB.crop((0, 0, w2, h)).resize((self.opt.loadSize, self.opt.loadSize), Image.BICUBIC)
        B = AB.crop((w2, 0, w, h)).resize((self.opt.loadSize, self.opt.loadSize), Image.BICUBIC)
        A = transforms.ToTensor()(A)
        B = transforms.ToTensor()(B)
        w_offset = random.randint(0, max(0, self.opt.loadSize - self.opt.fineSize - 1))
        h_offset = random.randint(0, max(0, self.opt.loadSize - self.opt.fineSize - 1))

        A = A[:, h_offset:h_offset + self.opt.fineSize, w_offset:w_offset + self.opt.fineSize]
        B = B[:, h_offset:h_offset + self.opt.fineSize, w_offset:w_offset + self.opt.fineSize]

        A = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(A)
        B = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(B)

        if self.opt.which_direction == 'BtoA':
            input_nc = self.opt.output_nc
            output_nc = self.opt.input_nc
        else:
            input_nc = self.opt.input_nc
            output_nc = self.opt.output_nc

        if (not self.opt.no_flip) and random.random() < 0.5:
            idx = [i for i in range(A.size(2) - 1, -1, -1)]
            idx = torch.LongTensor(idx)
            A = A.index_select(2, idx)
            B = B.index_select(2, idx)

        if input_nc == 1:  # RGB to gray
            tmp = A[0, ...] * 0.299 + A[1, ...] * 0.587 + A[2, ...] * 0.114
            A = tmp.unsqueeze(0)

        if output_nc == 1:  # RGB to gray
            tmp = B[0, ...] * 0.299 + B[1, ...] * 0.587 + B[2, ...] * 0.114
            B = tmp.unsqueeze(0)

        return {'A': A, 'B': B,
                'A_paths': AB_path, 'B_paths': AB_path}

    def __len__(self):
        return len(self.AB_paths)

    def name(self):
        return 'AlignedDataset'