summaryrefslogtreecommitdiff
path: root/options/base_options.py
diff options
context:
space:
mode:
Diffstat (limited to 'options/base_options.py')
-rw-r--r--options/base_options.py6
1 files changed, 3 insertions, 3 deletions
diff --git a/options/base_options.py b/options/base_options.py
index e89f144..13466bf 100644
--- a/options/base_options.py
+++ b/options/base_options.py
@@ -3,9 +3,10 @@ import os
from util import util
import torch
+
class BaseOptions():
def __init__(self):
- self.parser = argparse.ArgumentParser()
+ self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
self.initialized = False
def initialize(self):
@@ -33,12 +34,11 @@ class BaseOptions():
self.parser.add_argument('--display_winsize', type=int, default=256, help='display window size')
self.parser.add_argument('--display_id', type=int, default=1, help='window id of the web display')
self.parser.add_argument('--display_port', type=int, default=8097, help='visdom port of the web display')
- self.parser.add_argument('--display_single_pane_ncols', type=int, default=0, help='if positive, display all images in a single visdom web panel with certain number of images per row.')
self.parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator')
self.parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.')
self.parser.add_argument('--resize_or_crop', type=str, default='resize_and_crop', help='scaling and cropping of images at load time [resize_and_crop|crop|scale_width|scale_width_and_crop]')
self.parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation')
- self.parser.add_argument('--init_type', type=str, default='xavier', help='network initialization [normal|xavier|kaiming|orthogonal]')
+ self.parser.add_argument('--init_type', type=str, default='normal', help='network initialization [normal|xavier|kaiming|orthogonal]')
self.initialized = True