summaryrefslogtreecommitdiff
path: root/models
diff options
context:
space:
mode:
Diffstat (limited to 'models')
-rw-r--r--models/models.py2
-rw-r--r--models/pix2pix_model.py19
-rw-r--r--models/test_model.py31
3 files changed, 24 insertions, 28 deletions
diff --git a/models/models.py b/models/models.py
index efcd898..d5bb9d8 100644
--- a/models/models.py
+++ b/models/models.py
@@ -13,7 +13,7 @@ def create_model(opt):
elif opt.model == 'test':
assert(opt.dataset_mode == 'single')
from .test_model import TestModel
- model = OneDirectionTestModel()
+ model = TestModel()
else:
raise ValueError("Model [%s] not recognized." % opt.model)
model.initialize(opt)
diff --git a/models/pix2pix_model.py b/models/pix2pix_model.py
index 4581d33..e44529b 100644
--- a/models/pix2pix_model.py
+++ b/models/pix2pix_model.py
@@ -8,6 +8,7 @@ from util.image_pool import ImagePool
from .base_model import BaseModel
from . import networks
+
class Pix2PixModel(BaseModel):
def name(self):
return 'Pix2PixModel'
@@ -23,12 +24,12 @@ class Pix2PixModel(BaseModel):
# load/define networks
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf,
- opt.which_model_netG, opt.norm, opt.use_dropout, self.gpu_ids)
+ opt.which_model_netG, opt.norm, opt.use_dropout, self.gpu_ids)
if self.isTrain:
use_sigmoid = opt.no_lsgan
self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf,
- opt.which_model_netD,
- opt.n_layers_D, opt.norm, use_sigmoid, self.gpu_ids)
+ opt.which_model_netD,
+ opt.n_layers_D, opt.norm, use_sigmoid, self.gpu_ids)
if not self.isTrain or opt.continue_train:
self.load_network(self.netG, 'G', opt.which_epoch)
if self.isTrain:
@@ -71,7 +72,7 @@ class Pix2PixModel(BaseModel):
self.fake_B = self.netG.forward(self.real_A)
self.real_B = Variable(self.input_B, volatile=True)
- #get image paths
+ # get image paths
def get_image_paths(self):
return self.image_paths
@@ -83,7 +84,7 @@ class Pix2PixModel(BaseModel):
self.loss_D_fake = self.criterionGAN(self.pred_fake, False)
# Real
- real_AB = torch.cat((self.real_A, self.real_B), 1)#.detach()
+ real_AB = torch.cat((self.real_A, self.real_B), 1)
self.pred_real = self.netD.forward(real_AB)
self.loss_D_real = self.criterionGAN(self.pred_real, True)
@@ -118,10 +119,10 @@ class Pix2PixModel(BaseModel):
def get_current_errors(self):
return OrderedDict([('G_GAN', self.loss_G_GAN.data[0]),
- ('G_L1', self.loss_G_L1.data[0]),
- ('D_real', self.loss_D_real.data[0]),
- ('D_fake', self.loss_D_fake.data[0])
- ])
+ ('G_L1', self.loss_G_L1.data[0]),
+ ('D_real', self.loss_D_real.data[0]),
+ ('D_fake', self.loss_D_fake.data[0])
+ ])
def get_current_visuals(self):
real_A = util.tensor2im(self.real_A.data)
diff --git a/models/test_model.py b/models/test_model.py
index a356263..65aa088 100644
--- a/models/test_model.py
+++ b/models/test_model.py
@@ -10,37 +10,32 @@ class TestModel(BaseModel):
return 'TestModel'
def initialize(self, opt):
+ assert(not opt.isTrain)
BaseModel.initialize(self, opt)
+ self.input_A = self.Tensor(opt.batchSize, opt.input_nc, opt.fineSize, opt.fineSize)
- nb = opt.batchSize
- size = opt.fineSize
- self.input_A = self.Tensor(nb, opt.input_nc, size, size)
-
- assert(not self.isTrain)
- self.netG_A = networks.define_G(opt.input_nc, opt.output_nc,
- opt.ngf, opt.which_model_netG,
- opt.norm, opt.use_dropout,
- self.gpu_ids)
+ self.netG = networks.define_G(opt.input_nc, opt.output_nc,
+ opt.ngf, opt.which_model_netG,
+ opt.norm, opt.use_dropout,
+ self.gpu_ids)
which_epoch = opt.which_epoch
- #AtoB = self.opt.which_direction == 'AtoB'
- #which_network = 'G_A' if AtoB else 'G_B'
- self.load_network(self.netG_A, 'G', which_epoch)
+ self.load_network(self.netG, 'G', which_epoch)
print('---------- Networks initialized -------------')
- networks.print_network(self.netG_A)
+ networks.print_network(self.netG)
print('-----------------------------------------------')
def set_input(self, input):
- AtoB = self.opt.which_direction == 'AtoB'
- input_A = input['A' if AtoB else 'B']
+ # we need to use single_dataset mode
+ input_A = input['A']
self.input_A.resize_(input_A.size()).copy_(input_A)
- self.image_paths = input['A_paths' if AtoB else 'B_paths']
+ self.image_paths = input['A_paths']
def test(self):
self.real_A = Variable(self.input_A)
- self.fake_B = self.netG_A.forward(self.real_A)
+ self.fake_B = self.netG.forward(self.real_A)
- #get image paths
+ # get image paths
def get_image_paths(self):
return self.image_paths