summaryrefslogtreecommitdiff
path: root/models/networks.py
diff options
context:
space:
mode:
Diffstat (limited to 'models/networks.py')
-rw-r--r--models/networks.py9
1 files changed, 4 insertions, 5 deletions
diff --git a/models/networks.py b/models/networks.py
index 5624a7b..6777359 100644
--- a/models/networks.py
+++ b/models/networks.py
@@ -32,7 +32,7 @@ def define_G(input_nc, output_nc, ngf, which_model_netG, norm, gpu_ids=[]):
if which_model_netG == 'resnet_9blocks':
netG = ResnetGenerator(input_nc, output_nc, ngf, norm_layer, n_blocks=9, gpu_ids=gpu_ids)
elif which_model_netG == 'resnet_6blocks':
- netG = ResnetGenerator(input_nc, output_nc, ngf, norm_layer, 6, gpu_ids=gpu_ids)
+ netG = ResnetGenerator(input_nc, output_nc, ngf, norm_layer, n_blocks=6, gpu_ids=gpu_ids)
elif which_model_netG == 'unet_128':
netG = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer, gpu_ids=gpu_ids)
elif which_model_netG == 'unet_256':
@@ -40,7 +40,7 @@ def define_G(input_nc, output_nc, ngf, which_model_netG, norm, gpu_ids=[]):
else:
print('Generator model name [%s] is not recognized' % which_model_netG)
if len(gpu_ids) > 0:
- netG.cuda()
+ netG.cuda(device_id=gpu_ids[0])
netG.apply(weights_init)
return netG
@@ -59,7 +59,7 @@ def define_D(input_nc, ndf, which_model_netD,
print('Discriminator model name [%s] is not recognized' %
which_model_netD)
if use_gpu:
- netD.cuda()
+ netD.cuda(device_id=gpu_ids[0])
netD.apply(weights_init)
return netD
@@ -213,8 +213,7 @@ class UnetGenerator(nn.Module):
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, unet_block)
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, unet_block)
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, unet_block)
- unet_block = UnetSkipConnectionBlock(input_nc, ngf, unet_block,
- outermost=True)
+ unet_block = UnetSkipConnectionBlock(output_nc, ngf, unet_block, outermost=True)
self.model = unet_block