summaryrefslogtreecommitdiff
path: root/data/unaligned_data_loader.py
diff options
context:
space:
mode:
Diffstat (limited to 'data/unaligned_data_loader.py')
-rw-r--r--data/unaligned_data_loader.py63
1 files changed, 63 insertions, 0 deletions
diff --git a/data/unaligned_data_loader.py b/data/unaligned_data_loader.py
new file mode 100644
index 0000000..95d9ac7
--- /dev/null
+++ b/data/unaligned_data_loader.py
@@ -0,0 +1,63 @@
+import torch.utils.data
+import torchvision.transforms as transforms
+from data.base_data_loader import BaseDataLoader
+from data.image_folder import ImageFolder
+from builtins import object
+
+
+class PairedData(object):
+ def __init__(self, data_loader_A, data_loader_B):
+ self.data_loader_A = data_loader_A
+ self.data_loader_B = data_loader_B
+
+ def __iter__(self):
+ self.data_loader_A_iter = iter(self.data_loader_A)
+ self.data_loader_B_iter = iter(self.data_loader_B)
+ return self
+
+ def __next__(self):
+ A, A_paths = next(self.data_loader_A_iter)
+ B, B_paths = next(self.data_loader_B_iter)
+ return {'A': A, 'A_paths': A_paths,
+ 'B': B, 'B_paths': B_paths}
+
+
+class UnalignedDataLoader(BaseDataLoader):
+ def initialize(self, opt):
+ BaseDataLoader.initialize(self, opt)
+ transform = transforms.Compose([
+ transforms.Scale(opt.loadSize),
+ transforms.CenterCrop(opt.fineSize),
+ transforms.ToTensor(),
+ transforms.Normalize((0.5, 0.5, 0.5),
+ (0.5, 0.5, 0.5))])
+
+ # Dataset A
+ dataset_A = ImageFolder(root=opt.dataroot + '/' + opt.phase + 'A',
+ transform=transform, return_paths=True)
+ data_loader_A = torch.utils.data.DataLoader(
+ dataset_A,
+ batch_size=self.opt.batchSize,
+ shuffle=not self.opt.serial_batches,
+ num_workers=int(self.opt.nThreads))
+
+ # Dataset B
+ dataset_B = ImageFolder(root=opt.dataroot + '/' + opt.phase + 'B',
+ transform=transform, return_paths=True)
+ data_loader_B = torch.utils.data.DataLoader(
+ dataset_B,
+ batch_size=self.opt.batchSize,
+ shuffle=not self.opt.serial_batches,
+ num_workers=int(self.opt.nThreads))
+ self.dataset_A = dataset_A
+ self.dataset_B = dataset_B
+ self.paired_data = PairedData(data_loader_A, data_loader_B)
+
+ def name(self):
+ return 'UnalignedDataLoader'
+
+ def load_data(self):
+ return self.paired_data
+
+ def __len__(self):
+ return len(self.dataset_A)