diff options
Diffstat (limited to 'data/unaligned_data_loader.py')
| -rw-r--r-- | data/unaligned_data_loader.py | 15 |
1 files changed, 11 insertions, 4 deletions
diff --git a/data/unaligned_data_loader.py b/data/unaligned_data_loader.py index 3deb55b..bd0ea75 100644 --- a/data/unaligned_data_loader.py +++ b/data/unaligned_data_loader.py @@ -1,3 +1,4 @@ +import random import torch.utils.data import torchvision.transforms as transforms from data.base_data_loader import BaseDataLoader @@ -7,12 +8,13 @@ from builtins import object from pdb import set_trace as st class PairedData(object): - def __init__(self, data_loader_A, data_loader_B, max_dataset_size): + def __init__(self, data_loader_A, data_loader_B, max_dataset_size, flip): self.data_loader_A = data_loader_A self.data_loader_B = data_loader_B self.stop_A = False self.stop_B = False self.max_dataset_size = max_dataset_size + self.flip = flip def __iter__(self): self.stop_A = False @@ -47,6 +49,11 @@ class PairedData(object): raise StopIteration() else: self.iter += 1 + if self.flip and random.random() < 0.5: + idx = [i for i in range(A.size(3) - 1, -1, -1)] + idx = torch.LongTensor(idx) + A = A.index_select(3, idx) + B = B.index_select(3, idx) return {'A': A, 'A_paths': A_paths, 'B': B, 'B_paths': B_paths} @@ -58,8 +65,6 @@ class UnalignedDataLoader(BaseDataLoader): transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] - if opt.isTrain and not opt.no_flip: - transformations.insert(1, transforms.RandomHorizontalFlip()) transform = transforms.Compose(transformations) # Dataset A @@ -81,7 +86,9 @@ class UnalignedDataLoader(BaseDataLoader): num_workers=int(self.opt.nThreads)) self.dataset_A = dataset_A self.dataset_B = dataset_B - self.paired_data = PairedData(data_loader_A, data_loader_B, self.opt.max_dataset_size) + flip = opt.isTrain and not opt.no_flip + self.paired_data = PairedData(data_loader_A, data_loader_B, + self.opt.max_dataset_size, flip) def name(self): return 'UnalignedDataLoader' |
