summaryrefslogtreecommitdiff
path: root/data/custom_dataset_data_loader.py
diff options
context:
space:
mode:
Diffstat (limited to 'data/custom_dataset_data_loader.py')
-rw-r--r--data/custom_dataset_data_loader.py47
1 files changed, 0 insertions, 47 deletions
diff --git a/data/custom_dataset_data_loader.py b/data/custom_dataset_data_loader.py
deleted file mode 100644
index 787946f..0000000
--- a/data/custom_dataset_data_loader.py
+++ /dev/null
@@ -1,47 +0,0 @@
-import torch.utils.data
-from data.base_data_loader import BaseDataLoader
-
-
-def CreateDataset(opt):
- dataset = None
- if opt.dataset_mode == 'aligned':
- from data.aligned_dataset import AlignedDataset
- dataset = AlignedDataset()
- elif opt.dataset_mode == 'unaligned':
- from data.unaligned_dataset import UnalignedDataset
- dataset = UnalignedDataset()
- elif opt.dataset_mode == 'single':
- from data.single_dataset import SingleDataset
- dataset = SingleDataset()
- else:
- raise ValueError("Dataset [%s] not recognized." % opt.dataset_mode)
-
- print("dataset [%s] was created" % (dataset.name()))
- dataset.initialize(opt)
- return dataset
-
-
-class CustomDatasetDataLoader(BaseDataLoader):
- def name(self):
- return 'CustomDatasetDataLoader'
-
- def initialize(self, opt):
- BaseDataLoader.initialize(self, opt)
- self.dataset = CreateDataset(opt)
- self.dataloader = torch.utils.data.DataLoader(
- self.dataset,
- batch_size=opt.batchSize,
- shuffle=not opt.serial_batches,
- num_workers=int(opt.nThreads))
-
- def load_data(self):
- return self
-
- def __len__(self):
- return min(len(self.dataset), self.opt.max_dataset_size)
-
- def __iter__(self):
- for i, data in enumerate(self.dataloader):
- if i >= self.opt.max_dataset_size:
- break
- yield data