summaryrefslogtreecommitdiff
path: root/data/aligned_data_loader.py
diff options
context:
space:
mode:
Diffstat (limited to 'data/aligned_data_loader.py')
-rw-r--r--data/aligned_data_loader.py69
1 files changed, 69 insertions, 0 deletions
diff --git a/data/aligned_data_loader.py b/data/aligned_data_loader.py
new file mode 100644
index 0000000..01dbf89
--- /dev/null
+++ b/data/aligned_data_loader.py
@@ -0,0 +1,69 @@
+import random
+import torch.utils.data
+import torchvision.transforms as transforms
+from data.base_data_loader import BaseDataLoader
+from data.image_folder import ImageFolder
+from pdb import set_trace as st
+from builtins import object
+
+class PairedData(object):
+ def __init__(self, data_loader, fineSize):
+ self.data_loader = data_loader
+ self.fineSize = fineSize
+ # st()
+
+ def __iter__(self):
+ self.data_loader_iter = iter(self.data_loader)
+ return self
+
+ def __next__(self):
+ # st()
+ AB, AB_paths = next(self.data_loader_iter)
+ # st()
+ w_total = AB.size(3)
+ w = int(w_total / 2)
+ h = AB.size(2)
+
+ w_offset = random.randint(0, max(0, w - self.fineSize - 1))
+ h_offset = random.randint(0, max(0, h - self.fineSize - 1))
+
+ A = AB[:, :, h_offset:h_offset + self.fineSize,
+ w_offset:w_offset + self.fineSize]
+ B = AB[:, :, h_offset:h_offset + self.fineSize,
+ w + w_offset:w + w_offset + self.fineSize]
+
+ return {'A': A, 'A_paths': AB_paths, 'B': B, 'B_paths': AB_paths}
+
+
+class AlignedDataLoader(BaseDataLoader):
+ def initialize(self, opt):
+ BaseDataLoader.initialize(self, opt)
+ self.fineSize = opt.fineSize
+ transform = transforms.Compose([
+ # TODO: Scale
+ #transforms.Scale((opt.loadSize * 2, opt.loadSize)),
+ #transforms.CenterCrop(opt.fineSize),
+ transforms.ToTensor(),
+ transforms.Normalize((0.5, 0.5, 0.5),
+ (0.5, 0.5, 0.5))])
+
+ # Dataset A
+ dataset = ImageFolder(root=opt.dataroot + '/' + opt.phase,
+ transform=transform, return_paths=True)
+ data_loader = torch.utils.data.DataLoader(
+ dataset,
+ batch_size=self.opt.batchSize,
+ shuffle=not self.opt.serial_batches,
+ num_workers=int(self.opt.nThreads))
+
+ self.dataset = dataset
+ self.paired_data = PairedData(data_loader, opt.fineSize)
+
+ def name(self):
+ return 'AlignedDataLoader'
+
+ def load_data(self):
+ return self.paired_data
+
+ def __len__(self):
+ return len(self.dataset)