summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--models/base_model.py2
-rw-r--r--models/networks.py4
2 files changed, 3 insertions, 3 deletions
diff --git a/models/base_model.py b/models/base_model.py
index 446a903..d62d189 100644
--- a/models/base_model.py
+++ b/models/base_model.py
@@ -44,7 +44,7 @@ class BaseModel():
save_path = os.path.join(self.save_dir, save_filename)
torch.save(network.cpu().state_dict(), save_path)
if len(gpu_ids) and torch.cuda.is_available():
- network.cuda(device_id=gpu_ids[0])
+ network.cuda(device_id=gpu_ids[0]) # network.cuda(device=gpu_ids[0]) for the latest version.
# helper loading function that can be used by subclasses
def load_network(self, network, network_label, epoch_label):
diff --git a/models/networks.py b/models/networks.py
index 51e3f25..949659d 100644
--- a/models/networks.py
+++ b/models/networks.py
@@ -118,7 +118,7 @@ def define_G(input_nc, output_nc, ngf, which_model_netG, norm='batch', use_dropo
else:
raise NotImplementedError('Generator model name [%s] is not recognized' % which_model_netG)
if len(gpu_ids) > 0:
- netG.cuda(device_id=gpu_ids[0])
+ netG.cuda(device_id=gpu_ids[0]) # or netG.cuda(device=gpu_ids[0]) for latest version.
init_weights(netG, init_type=init_type)
return netG
@@ -139,7 +139,7 @@ def define_D(input_nc, ndf, which_model_netD,
raise NotImplementedError('Discriminator model name [%s] is not recognized' %
which_model_netD)
if use_gpu:
- netD.cuda(device_id=gpu_ids[0])
+ netD.cuda(device_id=gpu_ids[0]) # or netD.cuda(device=gpu_ids[0]) for latest version.
init_weights(netD, init_type=init_type)
return netD