summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--live-mogrify.py62
1 files changed, 31 insertions, 31 deletions
diff --git a/live-mogrify.py b/live-mogrify.py
index d93991b..0348c54 100644
--- a/live-mogrify.py
+++ b/live-mogrify.py
@@ -158,32 +158,32 @@ def list_sequences(module):
import torchvision.transforms as transforms
-def get_transform(opt={}):
- transform_list = []
- if opt.resize_or_crop == 'resize_and_crop':
- osize = [opt.loadSize, opt.loadSize]
- transform_list.append(transforms.Scale(osize, Image.BICUBIC))
- if opt.center_crop:
- transform_list.append(transforms.CenterCrop(opt.fineSize))
- else:
- transform_list.append(transforms.RandomCrop(opt.fineSize))
- # elif opt.resize_or_crop == 'crop':
- # transform_list.append(transforms.RandomCrop(opt.fineSize))
- # elif opt.resize_or_crop == 'scale_width':
- # transform_list.append(transforms.Lambda(
- # lambda img: __scale_width(img, opt.fineSize)))
- # elif opt.resize_or_crop == 'scale_width_and_crop':
- # transform_list.append(transforms.Lambda(
- # lambda img: __scale_width(img, opt.loadSize)))
- # transform_list.append(transforms.RandomCrop(opt.fineSize))
+# def get_transform(opt={}):
+# transform_list = []
+# if opt.resize_or_crop == 'resize_and_crop':
+# osize = [opt.loadSize, opt.loadSize]
+# transform_list.append(transforms.Scale(osize, Image.BICUBIC))
+# if opt.center_crop:
+# transform_list.append(transforms.CenterCrop(opt.fineSize))
+# else:
+# transform_list.append(transforms.RandomCrop(opt.fineSize))
+# # elif opt.resize_or_crop == 'crop':
+# # transform_list.append(transforms.RandomCrop(opt.fineSize))
+# # elif opt.resize_or_crop == 'scale_width':
+# # transform_list.append(transforms.Lambda(
+# # lambda img: __scale_width(img, opt.fineSize)))
+# # elif opt.resize_or_crop == 'scale_width_and_crop':
+# # transform_list.append(transforms.Lambda(
+# # lambda img: __scale_width(img, opt.loadSize)))
+# # transform_list.append(transforms.RandomCrop(opt.fineSize))
- # if opt.isTrain and not opt.no_flip:
- # transform_list.append(transforms.RandomHorizontalFlip())
+# # if opt.isTrain and not opt.no_flip:
+# # transform_list.append(transforms.RandomHorizontalFlip())
- transform_list += [transforms.ToTensor(),
- transforms.Normalize((0.5, 0.5, 0.5),
- (0.5, 0.5, 0.5))]
- return transforms.Compose(transform_list)
+# transform_list += [transforms.ToTensor(),
+# transforms.Normalize((0.5, 0.5, 0.5),
+# (0.5, 0.5, 0.5))]
+# return transforms.Compose(transform_list)
def load_frame(opt, index):
A_path = os.path.join(opt.render_dir, "frame_{:05d}.png".format(index))
@@ -309,17 +309,17 @@ def process_live_input(opt, data_opt, rpc_client, model):
print("generating...")
sequence_i = 1
i = 0
- #for i, data in enumerate(data_loader):
- while True:
+ # while True:
+
+ # data = load_frame(opt, i)
+ # if data is None:
+ # print("got no frame, exiting")
+ # break
+ for i, data in enumerate(data_loader):
if i >= opt.how_many:
print("generated {} images, exiting".format(i))
break
- data = load_frame(opt, i)
- if data is None:
- print("got no frame, exiting")
- break
-
if data_opt.load_checkpoint is True:
model.save_dir = os.path.join(opt.checkpoints_dir, opt.module_name, data_opt.checkpoint_name)
model.load_network(model.netG, 'G', data_opt.epoch)