diff options
| author | Taesung Park <taesung_park@berkeley.edu> | 2017-04-20 03:27:18 -0700 |
|---|---|---|
| committer | Taesung Park <taesung_park@berkeley.edu> | 2017-04-20 03:27:18 -0700 |
| commit | d83c47cc99c6a8cd4818d32972859f0d7b346238 (patch) | |
| tree | 4f5ae0b2493282f3108caf354d6937fefce0457e /train.py | |
| parent | baa154d611b8d8d4104b40a767d643cac3f52dec (diff) | |
fixed a bug where epoch_iter is 0 instead of dataset_size at the last iteration of each epoch
Diffstat (limited to 'train.py')
| -rw-r--r-- | train.py | 8 |
1 files changed, 4 insertions, 4 deletions
@@ -8,8 +8,8 @@ from util.visualizer import Visualizer data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() -num_train = len(data_loader) -print('#training images = %d' % num_train) +dataset_size = len(data_loader) +print('#training images = %d' % dataset_size) model = create_model(opt) visualizer = Visualizer(opt) @@ -21,7 +21,7 @@ for epoch in range(1, opt.niter + opt.niter_decay + 1): for i, data in enumerate(dataset): iter_start_time = time.time() total_steps += opt.batchSize - epoch_iter = total_steps % num_train + epoch_iter = total_steps - dataset_size * (epoch - 1) model.set_input(data) model.optimize_parameters() @@ -32,7 +32,7 @@ for epoch in range(1, opt.niter + opt.niter_decay + 1): errors = model.get_current_errors() visualizer.print_current_errors(epoch, epoch_iter, errors, iter_start_time) if opt.display_id > 0: - visualizer.plot_current_errors(epoch, float(epoch_iter)/num_train, opt, errors) + visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors) if total_steps % opt.save_latest_freq == 0: print('saving the latest model (epoch %d, total_steps %d)' % |
