diff options
| author | Jules Laplace <julescarbon@gmail.com> | 2018-05-15 03:03:46 +0200 |
|---|---|---|
| committer | Jules Laplace <julescarbon@gmail.com> | 2018-05-15 03:03:46 +0200 |
| commit | 2f30ea306d5890cd904fb4a6d892fc1a4a4f67e6 (patch) | |
| tree | 27861e7fc0cc03839008238fb82c6c9da35a5cb9 /test-mogrify.py | |
| parent | 0c21fc23becebc5f8dada8ec2fe8c55545de8a44 (diff) | |
test
Diffstat (limited to 'test-mogrify.py')
| -rw-r--r-- | test-mogrify.py | 158 |
1 files changed, 79 insertions, 79 deletions
diff --git a/test-mogrify.py b/test-mogrify.py index 4483eea..7cb9f05 100644 --- a/test-mogrify.py +++ b/test-mogrify.py @@ -36,91 +36,90 @@ if __name__ == '__main__': opt.render_dir = render_dir = opt.results_dir + opt.name + "/" + tag + "/" - # print("create render_dir: {}".format(render_dir)) - # if os.path.exists(render_dir): - # rmtree(render_dir) - # mkdirs(render_dir) + print("create render_dir: {}".format(render_dir)) + if os.path.exists(render_dir): + rmtree(render_dir) + mkdirs(render_dir) - # # cmd = ("convert", opt.start_img, '-canny', '0x1+10%+30%', render_dir + "frame_00000.png") - # # process = subprocess.Popen(cmd, stdout=subprocess.PIPE) - # # output, error = process.communicate() + # cmd = ("convert", opt.start_img, '-canny', '0x1+10%+30%', render_dir + "frame_00000.png") + # process = subprocess.Popen(cmd, stdout=subprocess.PIPE) + # output, error = process.communicate() - # copyfile(opt.start_img, render_dir + "frame_00000.png") + copyfile(opt.start_img, render_dir + "frame_00000.png") - # data_loader = CreateRecursiveDataLoader(opt) - # dataset = data_loader.load_data() - # ds = dataset.dataset - # model = create_model(opt) - # visualizer = Visualizer(opt) - # # create website - # # web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch)) - # # webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch)) - # # test - # last_im = None - # for i, data in enumerate(data_loader): - # if i >= opt.how_many: - # break - # model.set_input(data) - # model.test() - # visuals = model.get_current_visuals() - # img_path = model.get_image_paths() + data_loader = CreateRecursiveDataLoader(opt) + dataset = data_loader.load_data() + ds = dataset.dataset + model = create_model(opt) + visualizer = Visualizer(opt) + # create website + # web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch)) + # webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch)) + # test + last_im = None + for i, data in enumerate(data_loader): + if i >= opt.how_many: + break + model.set_input(data) + model.test() + visuals = model.get_current_visuals() + img_path = model.get_image_paths() - # if (i % 20) == 0: - # print('%04d: process image... %s' % (i, img_path)) - # # ims = visualizer.save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio) + if (i % 20) == 0: + print('%04d: process image... %s' % (i, img_path)) + # ims = visualizer.save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio) - # im = visuals['fake_B'] - # tmp_path = render_dir + "frame_{:05d}_tmp.png".format(i+1) - # edges_path = render_dir + "frame_{:05d}.png".format(i+1) - # render_path = render_dir + "ren_{:05d}.png".format(i+1) + im = visuals['fake_B'] + tmp_path = render_dir + "frame_{:05d}_tmp.png".format(i+1) + edges_path = render_dir + "frame_{:05d}.png".format(i+1) + render_path = render_dir + "ren_{:05d}.png".format(i+1) - # image_pil = Image.fromarray(im, mode='RGB') - # image_pil.save(tmp_path) - # os.rename(tmp_path, render_path) + image_pil = Image.fromarray(im, mode='RGB') + image_pil.save(tmp_path) + os.rename(tmp_path, render_path) - # if dataset.name() == 'RecursiveDatasetDataLoader': - # if data_opt.recursive and last_im is not None: - # tmp_im = im.copy() + if dataset.name() == 'RecursiveDatasetDataLoader': + if data_opt.recursive and last_im is not None: + tmp_im = im.copy() - # frac_a = data_opt.recursive_frac - # frac_b = 1.0 - frac_a + frac_a = data_opt.recursive_frac + frac_b = 1.0 - frac_a - # array_a = np.multiply(im.astype('float64'), frac_a) - # array_b = np.multiply(last_im.astype('float64'), frac_b) - # im = np.add(array_a, array_b).astype('uint8') - # # print(im.shape, im.dtype) - # last_im = np.roll(tmp_im, 1, axis=1) - # else: - # last_im = im.copy().astype('uint8') - # tmp_im = im.copy().astype('uint8') - # #print(im.shape, im.dtype) + array_a = np.multiply(im.astype('float64'), frac_a) + array_b = np.multiply(last_im.astype('float64'), frac_b) + im = np.add(array_a, array_b).astype('uint8') + # print(im.shape, im.dtype) + last_im = np.roll(tmp_im, 1, axis=1) + else: + last_im = im.copy().astype('uint8') + tmp_im = im.copy().astype('uint8') + #print(im.shape, im.dtype) - # image_pil = Image.fromarray(im, mode='RGB') - # im = np.asarray(image_pil).astype('uint8') - # #print(im.shape, im.dtype) + image_pil = Image.fromarray(im, mode='RGB') + im = np.asarray(image_pil).astype('uint8') + #print(im.shape, im.dtype) - # img = im[:, :, ::-1].copy() + img = im[:, :, ::-1].copy() - # if data_opt.clahe is True: - # lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB) - # l, a, b = cv2.split(lab) - # clahe = cv2.createCLAHE(clipLimit=data_opt.clip_limit, tileGridSize=(8,8)) - # l = clahe.apply(l) - # limg = cv2.merge((l,a,b)) - # img = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR) + if data_opt.clahe is True: + lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB) + l, a, b = cv2.split(lab) + clahe = cv2.createCLAHE(clipLimit=data_opt.clip_limit, tileGridSize=(8,8)) + l = clahe.apply(l) + limg = cv2.merge((l,a,b)) + img = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR) - # if data_opt.posterize is True: - # img = cv2.pyrMeanShiftFiltering(img, data_opt.spatial_window, data_opt.color_window) - # if data_opt.grayscale is True: - # img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) - # if data_opt.blur is True: - # img = cv2.GaussianBlur(img, (data_opt.blur_radius, data_opt.blur_radius), data_opt.blur_sigma) - # if data_opt.canny is True: - # img = cv2.Canny(img, data_opt.canny_lo, data_opt.canny_hi) - - # cv2.imwrite(tmp_path, img) - # os.rename(tmp_path, edges_path) + if data_opt.posterize is True: + img = cv2.pyrMeanShiftFiltering(img, data_opt.spatial_window, data_opt.color_window) + if data_opt.grayscale is True: + img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) + if data_opt.blur is True: + img = cv2.GaussianBlur(img, (data_opt.blur_radius, data_opt.blur_radius), data_opt.blur_sigma) + if data_opt.canny is True: + img = cv2.Canny(img, data_opt.canny_lo, data_opt.canny_hi) + cv2.imwrite(tmp_path, img) + os.rename(tmp_path, edges_path) # webpage.save() @@ -129,15 +128,16 @@ if __name__ == '__main__': print(opt.render_dir) video_fn = tag + "_mogrify.mp4" - cmd = ("ffmpeg", "-i", render_dir + "ren_%05d.png", "-y", "-c:v", "libx264", "-vf", "fps=30", "-pix_fmt", "yuv420p", "-s", "456x256", render_dir + video_fn) - process = subprocess.Popen(cmd, stdout=subprocess.PIPE) - output, error = process.communicate() + if data_opt.mov: + cmd = ("ffmpeg", "-i", render_dir + "ren_%05d.png", "-y", "-c:v", "libx264", "-vf", "fps=30", "-pix_fmt", "yuv420p", "-s", "456x256", render_dir + video_fn) + process = subprocess.Popen(cmd, stdout=subprocess.PIPE) + output, error = process.communicate() - print("________") + print("________") - cmd = ("scp", render_dir + video_fn, "jules@asdf.us:asdf/neural/") - process = subprocess.Popen(cmd, stdout=subprocess.PIPE) - output, error = process.communicate() + cmd = ("scp", render_dir + video_fn, "jules@asdf.us:asdf/neural/") + process = subprocess.Popen(cmd, stdout=subprocess.PIPE) + output, error = process.communicate() - print("https://asdf.us/neural/" + video_fn) + print("https://asdf.us/neural/" + video_fn) |
