summaryrefslogtreecommitdiff
path: root/test-mogrify.py
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2018-05-15 03:03:46 +0200
committerJules Laplace <julescarbon@gmail.com>2018-05-15 03:03:46 +0200
commit2f30ea306d5890cd904fb4a6d892fc1a4a4f67e6 (patch)
tree27861e7fc0cc03839008238fb82c6c9da35a5cb9 /test-mogrify.py
parent0c21fc23becebc5f8dada8ec2fe8c55545de8a44 (diff)
test
Diffstat (limited to 'test-mogrify.py')
-rw-r--r--test-mogrify.py158
1 files changed, 79 insertions, 79 deletions
diff --git a/test-mogrify.py b/test-mogrify.py
index 4483eea..7cb9f05 100644
--- a/test-mogrify.py
+++ b/test-mogrify.py
@@ -36,91 +36,90 @@ if __name__ == '__main__':
opt.render_dir = render_dir = opt.results_dir + opt.name + "/" + tag + "/"
- # print("create render_dir: {}".format(render_dir))
- # if os.path.exists(render_dir):
- # rmtree(render_dir)
- # mkdirs(render_dir)
+ print("create render_dir: {}".format(render_dir))
+ if os.path.exists(render_dir):
+ rmtree(render_dir)
+ mkdirs(render_dir)
- # # cmd = ("convert", opt.start_img, '-canny', '0x1+10%+30%', render_dir + "frame_00000.png")
- # # process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
- # # output, error = process.communicate()
+ # cmd = ("convert", opt.start_img, '-canny', '0x1+10%+30%', render_dir + "frame_00000.png")
+ # process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
+ # output, error = process.communicate()
- # copyfile(opt.start_img, render_dir + "frame_00000.png")
+ copyfile(opt.start_img, render_dir + "frame_00000.png")
- # data_loader = CreateRecursiveDataLoader(opt)
- # dataset = data_loader.load_data()
- # ds = dataset.dataset
- # model = create_model(opt)
- # visualizer = Visualizer(opt)
- # # create website
- # # web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
- # # webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
- # # test
- # last_im = None
- # for i, data in enumerate(data_loader):
- # if i >= opt.how_many:
- # break
- # model.set_input(data)
- # model.test()
- # visuals = model.get_current_visuals()
- # img_path = model.get_image_paths()
+ data_loader = CreateRecursiveDataLoader(opt)
+ dataset = data_loader.load_data()
+ ds = dataset.dataset
+ model = create_model(opt)
+ visualizer = Visualizer(opt)
+ # create website
+ # web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
+ # webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
+ # test
+ last_im = None
+ for i, data in enumerate(data_loader):
+ if i >= opt.how_many:
+ break
+ model.set_input(data)
+ model.test()
+ visuals = model.get_current_visuals()
+ img_path = model.get_image_paths()
- # if (i % 20) == 0:
- # print('%04d: process image... %s' % (i, img_path))
- # # ims = visualizer.save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio)
+ if (i % 20) == 0:
+ print('%04d: process image... %s' % (i, img_path))
+ # ims = visualizer.save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio)
- # im = visuals['fake_B']
- # tmp_path = render_dir + "frame_{:05d}_tmp.png".format(i+1)
- # edges_path = render_dir + "frame_{:05d}.png".format(i+1)
- # render_path = render_dir + "ren_{:05d}.png".format(i+1)
+ im = visuals['fake_B']
+ tmp_path = render_dir + "frame_{:05d}_tmp.png".format(i+1)
+ edges_path = render_dir + "frame_{:05d}.png".format(i+1)
+ render_path = render_dir + "ren_{:05d}.png".format(i+1)
- # image_pil = Image.fromarray(im, mode='RGB')
- # image_pil.save(tmp_path)
- # os.rename(tmp_path, render_path)
+ image_pil = Image.fromarray(im, mode='RGB')
+ image_pil.save(tmp_path)
+ os.rename(tmp_path, render_path)
- # if dataset.name() == 'RecursiveDatasetDataLoader':
- # if data_opt.recursive and last_im is not None:
- # tmp_im = im.copy()
+ if dataset.name() == 'RecursiveDatasetDataLoader':
+ if data_opt.recursive and last_im is not None:
+ tmp_im = im.copy()
- # frac_a = data_opt.recursive_frac
- # frac_b = 1.0 - frac_a
+ frac_a = data_opt.recursive_frac
+ frac_b = 1.0 - frac_a
- # array_a = np.multiply(im.astype('float64'), frac_a)
- # array_b = np.multiply(last_im.astype('float64'), frac_b)
- # im = np.add(array_a, array_b).astype('uint8')
- # # print(im.shape, im.dtype)
- # last_im = np.roll(tmp_im, 1, axis=1)
- # else:
- # last_im = im.copy().astype('uint8')
- # tmp_im = im.copy().astype('uint8')
- # #print(im.shape, im.dtype)
+ array_a = np.multiply(im.astype('float64'), frac_a)
+ array_b = np.multiply(last_im.astype('float64'), frac_b)
+ im = np.add(array_a, array_b).astype('uint8')
+ # print(im.shape, im.dtype)
+ last_im = np.roll(tmp_im, 1, axis=1)
+ else:
+ last_im = im.copy().astype('uint8')
+ tmp_im = im.copy().astype('uint8')
+ #print(im.shape, im.dtype)
- # image_pil = Image.fromarray(im, mode='RGB')
- # im = np.asarray(image_pil).astype('uint8')
- # #print(im.shape, im.dtype)
+ image_pil = Image.fromarray(im, mode='RGB')
+ im = np.asarray(image_pil).astype('uint8')
+ #print(im.shape, im.dtype)
- # img = im[:, :, ::-1].copy()
+ img = im[:, :, ::-1].copy()
- # if data_opt.clahe is True:
- # lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
- # l, a, b = cv2.split(lab)
- # clahe = cv2.createCLAHE(clipLimit=data_opt.clip_limit, tileGridSize=(8,8))
- # l = clahe.apply(l)
- # limg = cv2.merge((l,a,b))
- # img = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)
+ if data_opt.clahe is True:
+ lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
+ l, a, b = cv2.split(lab)
+ clahe = cv2.createCLAHE(clipLimit=data_opt.clip_limit, tileGridSize=(8,8))
+ l = clahe.apply(l)
+ limg = cv2.merge((l,a,b))
+ img = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)
- # if data_opt.posterize is True:
- # img = cv2.pyrMeanShiftFiltering(img, data_opt.spatial_window, data_opt.color_window)
- # if data_opt.grayscale is True:
- # img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- # if data_opt.blur is True:
- # img = cv2.GaussianBlur(img, (data_opt.blur_radius, data_opt.blur_radius), data_opt.blur_sigma)
- # if data_opt.canny is True:
- # img = cv2.Canny(img, data_opt.canny_lo, data_opt.canny_hi)
-
- # cv2.imwrite(tmp_path, img)
- # os.rename(tmp_path, edges_path)
+ if data_opt.posterize is True:
+ img = cv2.pyrMeanShiftFiltering(img, data_opt.spatial_window, data_opt.color_window)
+ if data_opt.grayscale is True:
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
+ if data_opt.blur is True:
+ img = cv2.GaussianBlur(img, (data_opt.blur_radius, data_opt.blur_radius), data_opt.blur_sigma)
+ if data_opt.canny is True:
+ img = cv2.Canny(img, data_opt.canny_lo, data_opt.canny_hi)
+ cv2.imwrite(tmp_path, img)
+ os.rename(tmp_path, edges_path)
# webpage.save()
@@ -129,15 +128,16 @@ if __name__ == '__main__':
print(opt.render_dir)
video_fn = tag + "_mogrify.mp4"
- cmd = ("ffmpeg", "-i", render_dir + "ren_%05d.png", "-y", "-c:v", "libx264", "-vf", "fps=30", "-pix_fmt", "yuv420p", "-s", "456x256", render_dir + video_fn)
- process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
- output, error = process.communicate()
+ if data_opt.mov:
+ cmd = ("ffmpeg", "-i", render_dir + "ren_%05d.png", "-y", "-c:v", "libx264", "-vf", "fps=30", "-pix_fmt", "yuv420p", "-s", "456x256", render_dir + video_fn)
+ process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
+ output, error = process.communicate()
- print("________")
+ print("________")
- cmd = ("scp", render_dir + video_fn, "jules@asdf.us:asdf/neural/")
- process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
- output, error = process.communicate()
+ cmd = ("scp", render_dir + video_fn, "jules@asdf.us:asdf/neural/")
+ process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
+ output, error = process.communicate()
- print("https://asdf.us/neural/" + video_fn)
+ print("https://asdf.us/neural/" + video_fn)