summaryrefslogtreecommitdiff
path: root/options
diff options
context:
space:
mode:
authorjunyanz <junyanz@berkeley.edu>2017-11-04 02:27:18 -0700
committerjunyanz <junyanz@berkeley.edu>2017-11-04 02:27:18 -0700
commit6b8e96c4bbd73a1e1d4e126d795a26fd0dae983c (patch)
tree67072a0442b705b5d5b29840f4b41e13af1d4597 /options
parent5f858eb70a3c110238f74a592bad0e7be601c539 (diff)
add update_html_freq flag
Diffstat (limited to 'options')
-rw-r--r--options/base_options.py2
-rw-r--r--options/train_options.py4
2 files changed, 4 insertions, 2 deletions
diff --git a/options/base_options.py b/options/base_options.py
index b2d5360..28ca673 100644
--- a/options/base_options.py
+++ b/options/base_options.py
@@ -3,6 +3,7 @@ import os
from util import util
import torch
+
class BaseOptions():
def __init__(self):
self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
@@ -33,7 +34,6 @@ class BaseOptions():
self.parser.add_argument('--display_winsize', type=int, default=256, help='display window size')
self.parser.add_argument('--display_id', type=int, default=1, help='window id of the web display')
self.parser.add_argument('--display_port', type=int, default=8097, help='visdom port of the web display')
- self.parser.add_argument('--display_single_pane_ncols', type=int, default=0, help='if positive, display all images in a single visdom web panel with certain number of images per row.')
self.parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator')
self.parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.')
self.parser.add_argument('--resize_or_crop', type=str, default='resize_and_crop', help='scaling and cropping of images at load time [resize_and_crop|crop|scale_width|scale_width_and_crop]')
diff --git a/options/train_options.py b/options/train_options.py
index 32120ec..603d76a 100644
--- a/options/train_options.py
+++ b/options/train_options.py
@@ -5,6 +5,8 @@ class TrainOptions(BaseOptions):
def initialize(self):
BaseOptions.initialize(self)
self.parser.add_argument('--display_freq', type=int, default=100, help='frequency of showing training results on screen')
+ self.parser.add_argument('--display_single_pane_ncols', type=int, default=0, help='if positive, display all images in a single visdom web panel with certain number of images per row.')
+ self.parser.add_argument('--update_html_freq', type=int, default=1000, help='frequency of saving training results to html')
self.parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console')
self.parser.add_argument('--save_latest_freq', type=int, default=5000, help='frequency of saving the latest results')
self.parser.add_argument('--save_epoch_freq', type=int, default=5, help='frequency of saving checkpoints at the end of epochs')
@@ -23,6 +25,6 @@ class TrainOptions(BaseOptions):
self.parser.add_argument('--no_html', action='store_true', help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/')
self.parser.add_argument('--lr_policy', type=str, default='lambda', help='learning rate policy: lambda|step|plateau')
self.parser.add_argument('--lr_decay_iters', type=int, default=50, help='multiply by a gamma every lr_decay_iters iterations')
- self.parser.add_argument('--identity', type=float, default=0.0, help='use identity mapping. Setting identity other than 1 has an effect of scaling the weight of the identity mapping loss. For example, if the weight of the identity loss should be 10 times smaller than the weight of the reconstruction loss, please set optidentity = 0.1')
+ self.parser.add_argument('--identity', type=float, default=0.5, help='use identity mapping. Setting identity other than 1 has an effect of scaling the weight of the identity mapping loss. For example, if the weight of the identity loss should be 10 times smaller than the weight of the reconstruction loss, please set optidentity = 0.1')
self.isTrain = True