diff options
| author | junyanz <junyanz@berkeley.edu> | 2017-06-13 00:10:04 -0700 |
|---|---|---|
| committer | junyanz <junyanz@berkeley.edu> | 2017-06-13 00:10:04 -0700 |
| commit | 7212499f839db946c9296b84d6491fe5d6097dea (patch) | |
| tree | 95f05a1163d09ce9e56bde60f6b332bd529e5f5c /models/pix2pix_model.py | |
| parent | e6858e35f0a08c6139c133122d222d0d85e8005d (diff) | |
predict single image
Diffstat (limited to 'models/pix2pix_model.py')
| -rw-r--r-- | models/pix2pix_model.py | 19 |
1 files changed, 10 insertions, 9 deletions
diff --git a/models/pix2pix_model.py b/models/pix2pix_model.py index 4581d33..e44529b 100644 --- a/models/pix2pix_model.py +++ b/models/pix2pix_model.py @@ -8,6 +8,7 @@ from util.image_pool import ImagePool from .base_model import BaseModel from . import networks + class Pix2PixModel(BaseModel): def name(self): return 'Pix2PixModel' @@ -23,12 +24,12 @@ class Pix2PixModel(BaseModel): # load/define networks self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, - opt.which_model_netG, opt.norm, opt.use_dropout, self.gpu_ids) + opt.which_model_netG, opt.norm, opt.use_dropout, self.gpu_ids) if self.isTrain: use_sigmoid = opt.no_lsgan self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, - opt.which_model_netD, - opt.n_layers_D, opt.norm, use_sigmoid, self.gpu_ids) + opt.which_model_netD, + opt.n_layers_D, opt.norm, use_sigmoid, self.gpu_ids) if not self.isTrain or opt.continue_train: self.load_network(self.netG, 'G', opt.which_epoch) if self.isTrain: @@ -71,7 +72,7 @@ class Pix2PixModel(BaseModel): self.fake_B = self.netG.forward(self.real_A) self.real_B = Variable(self.input_B, volatile=True) - #get image paths + # get image paths def get_image_paths(self): return self.image_paths @@ -83,7 +84,7 @@ class Pix2PixModel(BaseModel): self.loss_D_fake = self.criterionGAN(self.pred_fake, False) # Real - real_AB = torch.cat((self.real_A, self.real_B), 1)#.detach() + real_AB = torch.cat((self.real_A, self.real_B), 1) self.pred_real = self.netD.forward(real_AB) self.loss_D_real = self.criterionGAN(self.pred_real, True) @@ -118,10 +119,10 @@ class Pix2PixModel(BaseModel): def get_current_errors(self): return OrderedDict([('G_GAN', self.loss_G_GAN.data[0]), - ('G_L1', self.loss_G_L1.data[0]), - ('D_real', self.loss_D_real.data[0]), - ('D_fake', self.loss_D_fake.data[0]) - ]) + ('G_L1', self.loss_G_L1.data[0]), + ('D_real', self.loss_D_real.data[0]), + ('D_fake', self.loss_D_fake.data[0]) + ]) def get_current_visuals(self): real_A = util.tensor2im(self.real_A.data) |
