summaryrefslogtreecommitdiff
path: root/models/pix2pix_model.py
diff options
context:
space:
mode:
authorjunyanz <junyanz@berkeley.edu>2017-06-13 00:10:04 -0700
committerjunyanz <junyanz@berkeley.edu>2017-06-13 00:10:04 -0700
commit7212499f839db946c9296b84d6491fe5d6097dea (patch)
tree95f05a1163d09ce9e56bde60f6b332bd529e5f5c /models/pix2pix_model.py
parente6858e35f0a08c6139c133122d222d0d85e8005d (diff)
predict single image
Diffstat (limited to 'models/pix2pix_model.py')
-rw-r--r--models/pix2pix_model.py19
1 files changed, 10 insertions, 9 deletions
diff --git a/models/pix2pix_model.py b/models/pix2pix_model.py
index 4581d33..e44529b 100644
--- a/models/pix2pix_model.py
+++ b/models/pix2pix_model.py
@@ -8,6 +8,7 @@ from util.image_pool import ImagePool
from .base_model import BaseModel
from . import networks
+
class Pix2PixModel(BaseModel):
def name(self):
return 'Pix2PixModel'
@@ -23,12 +24,12 @@ class Pix2PixModel(BaseModel):
# load/define networks
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf,
- opt.which_model_netG, opt.norm, opt.use_dropout, self.gpu_ids)
+ opt.which_model_netG, opt.norm, opt.use_dropout, self.gpu_ids)
if self.isTrain:
use_sigmoid = opt.no_lsgan
self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf,
- opt.which_model_netD,
- opt.n_layers_D, opt.norm, use_sigmoid, self.gpu_ids)
+ opt.which_model_netD,
+ opt.n_layers_D, opt.norm, use_sigmoid, self.gpu_ids)
if not self.isTrain or opt.continue_train:
self.load_network(self.netG, 'G', opt.which_epoch)
if self.isTrain:
@@ -71,7 +72,7 @@ class Pix2PixModel(BaseModel):
self.fake_B = self.netG.forward(self.real_A)
self.real_B = Variable(self.input_B, volatile=True)
- #get image paths
+ # get image paths
def get_image_paths(self):
return self.image_paths
@@ -83,7 +84,7 @@ class Pix2PixModel(BaseModel):
self.loss_D_fake = self.criterionGAN(self.pred_fake, False)
# Real
- real_AB = torch.cat((self.real_A, self.real_B), 1)#.detach()
+ real_AB = torch.cat((self.real_A, self.real_B), 1)
self.pred_real = self.netD.forward(real_AB)
self.loss_D_real = self.criterionGAN(self.pred_real, True)
@@ -118,10 +119,10 @@ class Pix2PixModel(BaseModel):
def get_current_errors(self):
return OrderedDict([('G_GAN', self.loss_G_GAN.data[0]),
- ('G_L1', self.loss_G_L1.data[0]),
- ('D_real', self.loss_D_real.data[0]),
- ('D_fake', self.loss_D_fake.data[0])
- ])
+ ('G_L1', self.loss_G_L1.data[0]),
+ ('D_real', self.loss_D_real.data[0]),
+ ('D_fake', self.loss_D_fake.data[0])
+ ])
def get_current_visuals(self):
real_A = util.tensor2im(self.real_A.data)