diff options
| author | junyanz <junyanz@berkeley.edu> | 2017-06-12 23:52:56 -0700 |
|---|---|---|
| committer | junyanz <junyanz@berkeley.edu> | 2017-06-12 23:52:56 -0700 |
| commit | e6858e35f0a08c6139c133122d222d0d85e8005d (patch) | |
| tree | 2647ff13a164c684113eab455123394a49a65dad /models/one_direction_test_model.py | |
| parent | 3b72a659c38141e502b74bee65ca08d51dc3eabf (diff) | |
update dataset mode
Diffstat (limited to 'models/one_direction_test_model.py')
| -rw-r--r-- | models/one_direction_test_model.py | 51 |
1 files changed, 0 insertions, 51 deletions
diff --git a/models/one_direction_test_model.py b/models/one_direction_test_model.py deleted file mode 100644 index d4f6442..0000000 --- a/models/one_direction_test_model.py +++ /dev/null @@ -1,51 +0,0 @@ -from torch.autograd import Variable -from collections import OrderedDict -import util.util as util -from .base_model import BaseModel -from . import networks - - -class OneDirectionTestModel(BaseModel): - def name(self): - return 'OneDirectionTestModel' - - def initialize(self, opt): - BaseModel.initialize(self, opt) - - nb = opt.batchSize - size = opt.fineSize - self.input_A = self.Tensor(nb, opt.input_nc, size, size) - - assert(not self.isTrain) - self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, - opt.ngf, opt.which_model_netG, - opt.norm, opt.use_dropout, - self.gpu_ids) - which_epoch = opt.which_epoch - #AtoB = self.opt.which_direction == 'AtoB' - #which_network = 'G_A' if AtoB else 'G_B' - self.load_network(self.netG_A, 'G', which_epoch) - - print('---------- Networks initialized -------------') - networks.print_network(self.netG_A) - print('-----------------------------------------------') - - def set_input(self, input): - AtoB = self.opt.which_direction == 'AtoB' - input_A = input['A' if AtoB else 'B'] - self.input_A.resize_(input_A.size()).copy_(input_A) - self.image_paths = input['A_paths' if AtoB else 'B_paths'] - - def test(self): - self.real_A = Variable(self.input_A) - self.fake_B = self.netG_A.forward(self.real_A) - - #get image paths - def get_image_paths(self): - return self.image_paths - - def get_current_visuals(self): - real_A = util.tensor2im(self.real_A.data) - fake_B = util.tensor2im(self.fake_B.data) - return OrderedDict([('real_A', real_A), ('fake_B', fake_B)]) - |
