summaryrefslogtreecommitdiff
path: root/models/one_direction_test_model.py
diff options
context:
space:
mode:
authorjunyanz <junyanz@berkeley.edu>2017-06-12 23:52:56 -0700
committerjunyanz <junyanz@berkeley.edu>2017-06-12 23:52:56 -0700
commite6858e35f0a08c6139c133122d222d0d85e8005d (patch)
tree2647ff13a164c684113eab455123394a49a65dad /models/one_direction_test_model.py
parent3b72a659c38141e502b74bee65ca08d51dc3eabf (diff)
update dataset mode
Diffstat (limited to 'models/one_direction_test_model.py')
-rw-r--r--models/one_direction_test_model.py51
1 files changed, 0 insertions, 51 deletions
diff --git a/models/one_direction_test_model.py b/models/one_direction_test_model.py
deleted file mode 100644
index d4f6442..0000000
--- a/models/one_direction_test_model.py
+++ /dev/null
@@ -1,51 +0,0 @@
-from torch.autograd import Variable
-from collections import OrderedDict
-import util.util as util
-from .base_model import BaseModel
-from . import networks
-
-
-class OneDirectionTestModel(BaseModel):
- def name(self):
- return 'OneDirectionTestModel'
-
- def initialize(self, opt):
- BaseModel.initialize(self, opt)
-
- nb = opt.batchSize
- size = opt.fineSize
- self.input_A = self.Tensor(nb, opt.input_nc, size, size)
-
- assert(not self.isTrain)
- self.netG_A = networks.define_G(opt.input_nc, opt.output_nc,
- opt.ngf, opt.which_model_netG,
- opt.norm, opt.use_dropout,
- self.gpu_ids)
- which_epoch = opt.which_epoch
- #AtoB = self.opt.which_direction == 'AtoB'
- #which_network = 'G_A' if AtoB else 'G_B'
- self.load_network(self.netG_A, 'G', which_epoch)
-
- print('---------- Networks initialized -------------')
- networks.print_network(self.netG_A)
- print('-----------------------------------------------')
-
- def set_input(self, input):
- AtoB = self.opt.which_direction == 'AtoB'
- input_A = input['A' if AtoB else 'B']
- self.input_A.resize_(input_A.size()).copy_(input_A)
- self.image_paths = input['A_paths' if AtoB else 'B_paths']
-
- def test(self):
- self.real_A = Variable(self.input_A)
- self.fake_B = self.netG_A.forward(self.real_A)
-
- #get image paths
- def get_image_paths(self):
- return self.image_paths
-
- def get_current_visuals(self):
- real_A = util.tensor2im(self.real_A.data)
- fake_B = util.tensor2im(self.fake_B.data)
- return OrderedDict([('real_A', real_A), ('fake_B', fake_B)])
-