diff options
| author | junyanz <junyanzhu89@gmail.com> | 2018-02-09 11:39:35 -0500 |
|---|---|---|
| committer | junyanz <junyanzhu89@gmail.com> | 2018-02-09 11:39:35 -0500 |
| commit | 0ae4f0500e415a6a67689ef9356e8e4779ae5833 (patch) | |
| tree | 25392e96a1b64c8454f7f548886af7dd48aa6bd0 /models/networks.py | |
| parent | 7a5e2cd5f5003e8ca9a0fc3dac14a74b81287881 (diff) | |
code reformatting
Diffstat (limited to 'models/networks.py')
| -rw-r--r-- | models/networks.py | 5 |
1 files changed, 2 insertions, 3 deletions
diff --git a/models/networks.py b/models/networks.py index da2f59c..b118c6a 100644 --- a/models/networks.py +++ b/models/networks.py @@ -4,7 +4,6 @@ from torch.nn import init import functools from torch.autograd import Variable from torch.optim import lr_scheduler -import numpy as np ############################################################################### # Functions ############################################################################### @@ -434,6 +433,7 @@ class NLayerDiscriminator(nn.Module): else: return self.model(input) + class PixelDiscriminator(nn.Module): def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d, use_sigmoid=False, gpu_ids=[]): super(PixelDiscriminator, self).__init__() @@ -442,7 +442,7 @@ class PixelDiscriminator(nn.Module): use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d - + self.net = [ nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0), nn.LeakyReLU(0.2, True), @@ -461,4 +461,3 @@ class PixelDiscriminator(nn.Module): return nn.parallel.data_parallel(self.net, input, self.gpu_ids) else: return self.net(input) - |
