summaryrefslogtreecommitdiff
path: root/models/cycle_gan_model.py
diff options
context:
space:
mode:
authorSsnL <tongzhou.wang.1994@gmail.com>2017-11-09 16:08:30 -0500
committerSsnL <tongzhou.wang.1994@gmail.com>2017-11-09 16:15:05 -0500
commitc2fc8d442f1248231eab4b73e111665288b1e615 (patch)
tree9621879f1070cf1d99829fa020e87000f878a3fa /models/cycle_gan_model.py
parenta24e24d67d88f75869f447690f7d994fe7d42e2d (diff)
update
Diffstat (limited to 'models/cycle_gan_model.py')
-rw-r--r--models/cycle_gan_model.py30
1 files changed, 14 insertions, 16 deletions
diff --git a/models/cycle_gan_model.py b/models/cycle_gan_model.py
index e840e7b..fe06823 100644
--- a/models/cycle_gan_model.py
+++ b/models/cycle_gan_model.py
@@ -91,13 +91,13 @@ class CycleGANModel(BaseModel):
def test(self):
real_A = Variable(self.input_A, volatile=True)
- fake_B = self.netG_A.forward(real_A)
- self.rec_A = self.netG_B.forward(fake_B).data
+ fake_B = self.netG_A(real_A)
+ self.rec_A = self.netG_B(fake_B).data
self.fake_B = fake_B.data
real_B = Variable(self.input_B, volatile=True)
- fake_A = self.netG_B.forward(real_B)
- self.rec_B = self.netG_A.forward(fake_A).data
+ fake_A = self.netG_B(real_B)
+ self.rec_B = self.netG_A(fake_A).data
self.fake_A = fake_A.data
# get image paths
@@ -106,10 +106,10 @@ class CycleGANModel(BaseModel):
def backward_D_basic(self, netD, real, fake):
# Real
- pred_real = netD.forward(real)
+ pred_real = netD(real)
loss_D_real = self.criterionGAN(pred_real, True)
# Fake
- pred_fake = netD.forward(fake.detach())
+ pred_fake = netD(fake.detach())
loss_D_fake = self.criterionGAN(pred_fake, False)
# Combined loss
loss_D = (loss_D_real + loss_D_fake) * 0.5
@@ -134,17 +134,16 @@ class CycleGANModel(BaseModel):
# Identity loss
if lambda_idt > 0:
# G_A should be identity if real_B is fed.
- idt_A = self.netG_A.forward(self.real_B)
+ idt_A = self.netG_A(self.real_B)
loss_idt_A = self.criterionIdt(idt_A, self.real_B) * lambda_B * lambda_idt
# G_B should be identity if real_A is fed.
- idt_B = self.netG_B.forward(self.real_A)
+ idt_B = self.netG_B(self.real_A)
loss_idt_B = self.criterionIdt(idt_B, self.real_A) * lambda_A * lambda_idt
self.idt_A = idt_A.data
self.idt_B = idt_B.data
self.loss_idt_A = loss_idt_A.data[0]
self.loss_idt_B = loss_idt_B.data[0]
-
else:
loss_idt_A = 0
loss_idt_B = 0
@@ -152,23 +151,22 @@ class CycleGANModel(BaseModel):
self.loss_idt_B = 0
# GAN loss D_A(G_A(A))
- fake_B = self.netG_A.forward(self.real_A)
- pred_fake = self.netD_A.forward(fake_B)
+ fake_B = self.netG_A(self.real_A)
+ pred_fake = self.netD_A(fake_B)
loss_G_A = self.criterionGAN(pred_fake, True)
# GAN loss D_B(G_B(B))
- fake_A = self.netG_B.forward(self.real_B)
- pred_fake = self.netD_B.forward(fake_A)
+ fake_A = self.netG_B(self.real_B)
+ pred_fake = self.netD_B(fake_A)
loss_G_B = self.criterionGAN(pred_fake, True)
# Forward cycle loss
- rec_A = self.netG_B.forward(fake_B)
+ rec_A = self.netG_B(fake_B)
loss_cycle_A = self.criterionCycle(rec_A, self.real_A) * lambda_A
# Backward cycle loss
- rec_B = self.netG_A.forward(fake_A)
+ rec_B = self.netG_A(fake_A)
loss_cycle_B = self.criterionCycle(rec_B, self.real_B) * lambda_B
-
# combined loss
loss_G = loss_G_A + loss_G_B + loss_cycle_A + loss_cycle_B + loss_idt_A + loss_idt_B
loss_G.backward()