summaryrefslogtreecommitdiff
path: root/models/base_model.py
diff options
context:
space:
mode:
authorjunyanz <junyanz@berkeley.edu>2017-11-04 02:27:18 -0700
committerjunyanz <junyanz@berkeley.edu>2017-11-04 02:27:18 -0700
commit6b8e96c4bbd73a1e1d4e126d795a26fd0dae983c (patch)
tree67072a0442b705b5d5b29840f4b41e13af1d4597 /models/base_model.py
parent5f858eb70a3c110238f74a592bad0e7be601c539 (diff)
add update_html_freq flag
Diffstat (limited to 'models/base_model.py')
-rw-r--r--models/base_model.py3
1 files changed, 2 insertions, 1 deletions
diff --git a/models/base_model.py b/models/base_model.py
index d62d189..646a014 100644
--- a/models/base_model.py
+++ b/models/base_model.py
@@ -44,13 +44,14 @@ class BaseModel():
save_path = os.path.join(self.save_dir, save_filename)
torch.save(network.cpu().state_dict(), save_path)
if len(gpu_ids) and torch.cuda.is_available():
- network.cuda(device_id=gpu_ids[0]) # network.cuda(device=gpu_ids[0]) for the latest version.
+ network.cuda(device_id=gpu_ids[0]) # network.cuda(device=gpu_ids[0]) for the latest version.
# helper loading function that can be used by subclasses
def load_network(self, network, network_label, epoch_label):
save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
save_path = os.path.join(self.save_dir, save_filename)
network.load_state_dict(torch.load(save_path))
+
# update learning rate (called once every epoch)
def update_learning_rate(self):
for scheduler in self.schedulers: