diff options
| author | Jules Laplace <julescarbon@gmail.com> | 2018-05-19 10:49:53 +0200 |
|---|---|---|
| committer | Jules Laplace <julescarbon@gmail.com> | 2018-05-19 10:49:53 +0200 |
| commit | 3ac5fa26a191dc27434c60a6fb48deae828b7c90 (patch) | |
| tree | 4e993bedb0a389c23ca259dc66a2fe8a0caefa47 | |
| parent | b7f45a7277152d5611f8f050243dd8d7c351979d (diff) | |
options for minimum recursion value
| -rw-r--r-- | options/dataset_options.py | 14 | ||||
| -rw-r--r-- | test-mogrify-recursive.sh | 87 | ||||
| -rw-r--r-- | test-mogrify.py | 8 |
3 files changed, 96 insertions, 13 deletions
diff --git a/options/dataset_options.py b/options/dataset_options.py index e1ef153..368f2b2 100644 --- a/options/dataset_options.py +++ b/options/dataset_options.py @@ -77,6 +77,20 @@ class DatasetOptions(BaseOptions): ### RECURSION self.parser.add_argument( + '--transition-period', + default=3000, + type=int, + help='period of sine wave transition' + ) + + self.parser.add_argument( + '--transition-min', + default=1e-3, + type=float, + help='minimum amount of stabilization to apply' + ) + + self.parser.add_argument( '--recursive', action='store_true', help='recurse on previous output' diff --git a/test-mogrify-recursive.sh b/test-mogrify-recursive.sh index 0986fb0..17e36af 100644 --- a/test-mogrify-recursive.sh +++ b/test-mogrify-recursive.sh @@ -30,34 +30,99 @@ how_many=2000 # --blur --canny \ # --norm batch + # python test-mogrify.py \ + # --dataroot "/home/lens/Desktop/messi_ronaldo_256" \ + # --start_img "/home/lens/Desktop/messi_ronaldo_256/frame_00001.png" \ + # --experiment "messi_ronaldo" \ + # --name woodscaled_4 \ + # --recursive --recursive-frac 0.1 \ + # --sequence --sequence-frac 0.3 \ + # --process-frac 0.5 \ + # --how_many 10000 --transition-period 1000 \ + # --loadSize 256 --fineSize 256 \ + # --model test --which_model_netG unet_256 \ + # --which_direction AtoB --dataset_mode recursive \ + # --which_epoch latest \ + # --norm batch + + python test-mogrify.py \ + --dataroot "/home/lens/Desktop/venice" \ + --start_img "/home/lens/Desktop/venice/frame_00001.png" \ + --experiment "venice" \ + --name venice \ + --recursive --recursive-frac 0.1 \ + --sequence --sequence-frac 0.3 \ + --process-frac 0.5 \ + --transition-min 0.001 \ + --how_many 10000 --transition-period 1000 \ + --loadSize 256 --fineSize 256 \ + --model test --which_model_netG unet_256 \ + --which_direction AtoB --dataset_mode recursive \ + --which_epoch latest \ + --norm batch + python test-mogrify.py \ - --dataroot "/home/lens/Desktop/venice_256" \ - --start_img "/home/lens/Desktop/venice_256/frame_00001.png" \ - --experiment "messi_ronaldo" \ - --name pcfade \ - --recursive --recursive-frac 0.2 \ + --dataroot "/home/lens/Desktop/konigsheide" \ + --start_img "/home/lens/Desktop/konigsheide/frame_00001.png" \ + --experiment "konigsheide" \ + --name konigsheide \ + --recursive --recursive-frac 0.1 \ --sequence --sequence-frac 0.3 \ --process-frac 0.5 \ - --loadSize 256 --fineSize 256 --how_many 18000 \ + --transition-min 0.01 \ + --how_many 10000 --transition-period 1000 \ + --loadSize 256 --fineSize 256 \ --model test --which_model_netG unet_256 \ --which_direction AtoB --dataset_mode recursive \ --which_epoch latest \ --norm batch python test-mogrify.py \ - --dataroot "/home/lens/Desktop/walkermodified/walker5_256/" \ - --start_img "/home/lens/Desktop/walkermodified/walker5_256/frame_00001.png" \ - --experiment "messi_woodscaled4_r2_s5" \ - --name woodscaled_4 \ + --dataroot "/home/lens/Desktop/venice" \ + --start_img "/home/lens/Desktop/venice/frame_00001.png" \ + --experiment "konigsheide" \ + --name konigsheide \ --recursive --recursive-frac 0.1 \ --sequence --sequence-frac 0.3 \ --process-frac 0.5 \ - --loadSize 256 --fineSize 256 --how_many 2000 \ + --transition-min 0.05 \ + --how_many 10000 --transition-period 1000 \ + --loadSize 256 --fineSize 256 \ --model test --which_model_netG unet_256 \ --which_direction AtoB --dataset_mode recursive \ --which_epoch latest \ --norm batch + python test-mogrify.py \ + --dataroot "/home/lens/Desktop/konigsheide" \ + --start_img "/home/lens/Desktop/konigsheide/frame_00001.png" \ + --experiment "venice" \ + --name venice \ + --recursive --recursive-frac 0.1 \ + --sequence --sequence-frac 0.3 \ + --process-frac 0.5 \ + --transition-min 0.01 \ + --how_many 10000 --transition-period 1000 \ + --loadSize 256 --fineSize 256 \ + --model test --which_model_netG unet_256 \ + --which_direction AtoB --dataset_mode recursive \ + --which_epoch latest \ + --norm batch + + # python test-mogrify.py \ + # --dataroot "/home/lens/Desktop/walkermodified/walker5_256/" \ + # --start_img "/home/lens/Desktop/walkermodified/walker5_256/frame_00001.png" \ + # --experiment "messi_woodscaled4_r2_s5" \ + # --name woodscaled_4 \ + # --recursive --recursive-frac 0.1 \ + # --sequence --sequence-frac 0.3 \ + # --process-frac 0.5 \ + # --loadSize 256 --fineSize 256 --how_many 2000 \ + # --model test --which_model_netG unet_256 \ + # --which_direction AtoB --dataset_mode recursive \ + # --which_epoch latest \ + # --norm batch + # python test-mogrify.py \ # --dataroot "$dataset" \ # --start_img "$dataset/frame_00003.png" \ diff --git a/test-mogrify.py b/test-mogrify.py index c1e0c71..68f279d 100644 --- a/test-mogrify.py +++ b/test-mogrify.py @@ -131,7 +131,6 @@ if __name__ == '__main__': print("https://asdf.us/neural/" + video_fn) - if data_opt.mov: render_video() sys.exit(1) @@ -194,6 +193,11 @@ if __name__ == '__main__': image_pil.save(tmp_path) os.rename(tmp_path, render_path) + def clamp(n,a,b): + return max(a, min(n, b)) + def lerp(n,a,b): + return (b-a)*n+a + if dataset.name() == 'RecursiveDatasetDataLoader': if data_opt.recursive and last_im is not None: tmp_im = im.copy() @@ -201,7 +205,7 @@ if __name__ == '__main__': if data_opt.sequence and A_dir is not None: A_img = Image.open(sequence_path).convert('RGB') A_im = np.asarray(A_img) - t = math.sin(i / 3000 * math.pi * 2 ) / 2 + 1 + t = lerp(math.sin(i / data_opt.transition_period * math.pi * 2 ) / 2 + 1, data_opt.transition_min, 1.0) frac_a = data_opt.recursive_frac * (1 - t) frac_b = data_opt.sequence_frac * (1 - t) frac_c = 1.0 - frac_a - frac_b |
