blob: 4f8a4221f9d5997368404195a521da2f2fb9dc87 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
import ricky.params
from ricky.utils import data_from_image
from pybrain.datasets import SupervisedDataSet
# while subclassing this works, we should try to detect the length of params
# and build a new data set for each type of params set...
# therefore, an instance of SupervisedDataSet could actually be
# accessed through the params instance...simplified one-to-one mapping
# we are limited to only one classifier per params instance as well
# however this is sort of a good thing, because built into the params
# class can be a method that randomizes params, and then evaluates
# we might be able to get this done through multiple inheritance
# keep all dataset related stuff in a separate class to make it better organized
# we need
# .evaluate
# .generate_liked_image
# .train_from_url_list
# .reset
class DataSet(SupervisedDataSet):
@staticmethod
def _file_into_list(self, filepath):
f = open(filepath, "r")
return f.read().split("\n")
def _load_url_list(self, url_list, liked=False):
target = 0
if liked:
target = 1
data_list = [data_from_image(image) for image in url_list if image]
for data in data_list:
for params_class in ricky.params.Params.__subclasses__():
if data['module'] == params_class.__name__:
params_instance = params_class()
params_instance.from_dict(data['params'])
self.addSample(
params_instance.as_normalized(),
target
)
|