summaryrefslogtreecommitdiff
path: root/ricky/binaryclassifier.py
diff options
context:
space:
mode:
authorpepperpepperpepper <pepper@scannerjammer.com>2015-12-08 21:37:41 -0800
committerpepperpepperpepper <pepper@scannerjammer.com>2015-12-08 21:37:41 -0800
commit0e082b3065d8c3bafbd82cbaf24d6efb85825b05 (patch)
tree60df92a77a6d298aed851315ffad80d4d1e937ef /ricky/binaryclassifier.py
parent518f5b63f5b61308a8d3df64eb9ff715bb3c0e2c (diff)
made progress in binaryclassifier rewrite, restructured file tree
Diffstat (limited to 'ricky/binaryclassifier.py')
-rw-r--r--ricky/binaryclassifier.py34
1 files changed, 34 insertions, 0 deletions
diff --git a/ricky/binaryclassifier.py b/ricky/binaryclassifier.py
new file mode 100644
index 0000000..f6d8ae6
--- /dev/null
+++ b/ricky/binaryclassifier.py
@@ -0,0 +1,34 @@
+from pybrain.tools.shortcuts import buildNetwork
+from pybrain.structure import SoftmaxLayer
+from pybrain.datasets import SupervisedDataSet
+from pybrain.supervised.trainers import BackpropTrainer
+
+
+class BinaryClassifier(object):
+ def __init__(self):
+ self._default_hidden_layers = 3
+ pass
+
+ def _train(self, dataset):
+ """
+ pybrain.tools.shortcuts.buildNetwork(*layers, **options)
+ Build arbitrarily deep networks.
+
+ layers should be a list or tuple of integers, that
+ indicate how many neurons the layers should have.
+ bias and outputbias are flags to indicate whether
+ the network should have the corresponding biases;
+ both default to True.
+ """
+ net = buildNetwork(
+ dataset.params_length,
+ self._default_hidden_layers,
+ 1 # a binary classifier only requires one output layer
+ )
+ ds = SupervisedDataSet(dataset)
+ trainer = BackpropTrainer(net, ds)
+ trainer.trainUntilConvergence()
+ net.activate(params.as_serialized)
+
+ def classify(self, dataset):
+ return False