1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
|
#!/usr/bin/python2.7
import getopt
import numpy
import sys
from subprocess import Popen, PIPE
#{{{ usage
USAGE="""
USAGE: 3Drotate option=value infile outfile
USAGE: 3Drotate [-h or -help]
OPTIONS: any one or more
pan value rotation about image vertical centerline;
-180 to +180 (deg); default=0
tilt value rotation about image horizontal centerline;
-180 to +180 (deg); default=0
roll value rotation about the image center;
-180 to +180 (deg); default=0
pef value perspective exaggeration factor;
0 to 3.19; default=1
idx value +/- pixel displacement in rotation point right/left
in input from center; default=0
idy value +/- pixel displacement in rotation point down/up
in input from center; default=0
odx value +/- pixel displacement in rotation point right/left
in output from center; default=0
ody value +/- pixel displacement in rotation point down/up
in output from center; default=0
zoom value output zoom factor; where value > 1 means zoom in
and < -1 means zoom out; value=1 means no change
bgcolor value the background color value; any valid IM image
color specification (see -fill); default is black
skycolor value the sky color value; any valid IM image
color specification (see -fill); default is black
auto c center bounding box in output
(odx and ody ignored)
auto zc zoom to fill and center bounding box in output
(odx, ody and zoom ignored)
auto out creates an output image of size needed to hold
the transformed image; (odx, ody and zoom ignored)
vp value virtual-pixel method; any valid IM virtual-pixel method;
default=background
#
NAME: 3DROTATE
PURPOSE: To apply a perspective distortion to an image by providing rotation angles,
zoom, offsets, background color, perspective exaggeration and auto zoom/centering.
DESCRIPTION: 3DROTATE applies a perspective distortion to an image
by providing any combination of three optional rotation angle:
pan, tilt and roll with optional offsets and zoom and with an optional
control of the perspective exaggeration. The image is treated as if it
were painted on the Z=0 ground plane. The picture plane is then rotated
and then perspectively projected to a camera located a distance equal to
the focal length above the ground plane looking straight down along
the -Z direction.
ARGUMENTS:
PAN is a rotation of the image about its vertical
centerline -180 to +180 degrees. Positive rotations turn the
right side of the image away from the viewer and the left side
towards the viewer. Zero is no rotation. A PAN of +/- 180 deg
achieves the same results as -flip.
TILT is a rotation of the image about its horizontal
centerline -180 to +180 degrees. Positive rotations turn the top
of the image away from the viewer and the bottom towards the
viewer. Zero is no rotation. A TILT of +/- 180 deg
achieves the same results as -flop.
ROLL (like image rotation) is a rotation in the plane of the
the image -180 to +180 degrees. Positive values are clockwise
and negative values are counter-clockwise. Zero is no rotation.
A ROLL of any angle achieves the same results as -rotate.
PAN, TILT and ROLL are order dependent. If all three are provided,
then they will be done in whatever order specified.
PEF is the perspective exaggeration factor. It ranges from 0 to 3.19.
A normal perspective is achieved with the default of 1. As PEF is
increased from 1, the perspective effect moves towards that of
a wide angle lens (more distortion). If PEF is decreased from 1
the perspective effect moves towards a telephoto lens (less
distortion). PEF of 0.5 achieves an effect close to no perspective
distortion. As pef gets gets larger than some value which depends
upon the larger the pan, tilt and roll angles become, one reaches
a point where some parts of the picture become so distorted that
they wrap around and appear above the "horizon"
IDX is the a pixel displacement of the rotation point in the input image
from the image center. Positive values shift to the right along the
sample direction; negative values shift to the left. The default=0
corresponds to the image center.
IDY is the a pixel displacement of the rotation point in the input image
from the image center. Positive values shift to downward along the
line direction; negative values shift upward. The default=0
corresponds to the image center.
ODX is the a pixel displacement from the center of the output image where
one wants the corresponding input image rotation point to appear.
Positive values shift to the right along the sample direction; negative
values shift to the left. The default=0 corresponds to the output image center.
ODY is the a pixel displacement from the center of the output image where
one wants the corresponding input image rotation point to appear.
Positive values shift downward along the sample direction; negative
values shift upward. The default=0 corresponds to the output image center.
ZOOM is the output image zoom factor. Values > 1 (zoomin) cause the image
to appear closer; whereas values < 1 (zoomout) cause the image to
appear further away.
BGCOLOR is the color of the background to use to fill where the output image
is outside the area of the perspective of the input image. See the IM function
-fill for color specifications. Note that when using rgb(r,g,b), this must be
enclosed in quotes after the equal sign.
SKYCOLOR is the color to use in the 'sky' area above the perspective 'horizon'.
See the IM function -fill for color specifications. Note that when using
rgb(r,g,b), this must be enclosed in quotes after the equal sign.
AUTO can be either c, zc or out. If auto is c, then the resulting perspective
of the input image will have its bounding box centered in the output image
whose size will be the same as the input image. If
auto is zc, then the resulting perspective of the input image will have its
bounding box zoomed to fill its largest dimension to match the size of the
the input image and the other dimension will be centered in the output. If
auto is out, then the output image will be made as large or as small as
needed to just fill out the transformed input image. If any of these are
present, then the arguments OSHIFTX, OSHIFTY are ignored.
VP is the virtual-pixel method, which allows the image to be extended outside
its bounds. For example, vp=background, then the background color is used to
fill the area in the output image which is outside the perspective view of
the input image. If vp=tile, then the perspective view will be tiled to fill
the output image.
NOTE: The output image size will be the same as the input image size due
to current limitations on -distort Perspective.
CAVEAT: No guarantee that this script will work on all platforms,
nor that trapping of inconsistent parameters is complete and
foolproof. Use At Your Own Risk.
"""
#}}}
#{{{ defaults
# set default value
# rotation angles and rotation matrix
pan = 0
tilt = 0
roll = 0
R0 = [1, 0, 0]
R1 = [0, 1, 0]
R2 = [0, 0, 1]
# scaling output only
sx = 1
sy = 1
# offset du,dv = output; relative to center of image
du = 0
dv = 0
# offset di,dj = input; relative to center of image
di = 0
dj = 0
# perspective exaggeration factor
pef = 1
# zoom
zoom = 1
# background color
bgcolor = "black"
# sky color
skycolor = "black"
# virtual-pixel method
vp = "background"
# set directory for temporary files
dir = "." # suggestions are dir="." or dir="/tmp"
pi = numpy.math.pi
#}}}
# function to do dot product of 2 three element vectors
def dot(vec1, vec2):
return numpy.dot(vec1, vec2)
# function to do 3x3 matrix multiply M x N where input are rows of each matrix; M1 M2 M3 N1 N2 N3
def matmul3(m0, m1, m2, n0, n1, n2):
return numpy.matmul(
[m0, m1, m2], [n0, n1, n2]
)
# function to project points from input to output domain
def forwardProjrect(mat, ii, jj):
#takes in a 3x3 matrix and scalars ii and jj
#returns two scalars, uu and vv
numu = mat[0][0] * ii + mat[0][1] * jj + mat[0][2]
numv = mat[1][0] * ii + mat[1][1] * jj + mat[1][2]
den = mat[2][0] * ii + mat[2][1] * jj + mat[2][2]
uu = numu / den
vv = numv / den
return [uu, vv]
def errMsg(s):
sys.stderr.write("%s\n")
sys.exit(1)
def inverseProject(mat, uu, vv):
#note this function is more exact in python version
numi = (mat[0][0] * uu) + (mat[0][1] * vv) + mat[0][2]
numj = (mat[1][0] * uu) + (mat[1][1] * vv) + mat[1][2]
den = (mat[2][0] * uu) + (mat[2][1] * vv) + mat[2][2]
ii = numi / den
jj = numj / den
#FIXME chop off decimal for it to be like bash version
return [ii, jj]
# function to invert a 3 x 3 matrix using method of adjoint
# inverse is the transpose of the matrix of cofactors divided by the determinant
def M3inverse(mat):
return numpy.linalg.inv(mat)
def call_cmd(s):
cmd = s.split(" ")
ps = Popen(cmd, stdout=PIPE, stderr=PIPE)
out, err = process.communicate()
errcode = process.returncode
if errcode > 0:
errMsg(err)
return out
#
# get input image size
def imagesize(filepath):
width = int(call_cmd("identify -format %w %s" % (filepath)))
height = int(call_cmd("identify -format %h %s" % (filepath)))
return width, height
# test for correct number of arguments and get values
len_args = len(sys.argv)
if len_args == 1:
usage2()
sys.exit(1)
elif (len_args > 15):
errMsg("--- TOO MANY ARGUMENTS WERE PROVIDED ---")
else:
for arg in sys.argv:
if arg == "-h":
usage2()
sys.exit(1)
if arg == "-":
break #fixme
test = re.match(r'pan=(\d+\.\d+)', arg, flags=re.IGNORECASE)
if test:
pan = float(test.group(1))
if (pan > 180) or (pan < -180):
errMsg("PAN=%s MUST BE GREATER THAN -180 AND LESS THAN +180"
) % pan
sys.exit(1)
panang = numpy.multiply(numpy.pi, numpy.divide(pan, 180))
sinpan = numpy.sin(panang)
cospan = numpy.cos(panang)
Rp0 = [cospan, 0, sinpan]
Rp1 = [0, 1, 0]
Rp2 = [-sinpan, 0, cospan]
# do matrix multiply to get new rotation matrix
newmat = matmul3(Rp0, Rp1, Rp2, R0, R1, R2)
#RESETS CONSTANTS HERE, the GLOBAL ROTATION MATRIX
R0 = newmat[0]
R1 = newmat[1]
R2 = newmat[2]
test = re.match(r'tilt=(\d+\.\d+)', arg, flags=re.IGNORECASE) # tilt angle
if test:
tilt = float(test.group(1))
if not (tilt > -180) or not (tilt < 180):
errMsg("TILT=%s MUST BE LESS THAN 180 AND GREATER THAN -180"
) % tilt
sys.exit(1)
tiltang = numpy.multiply(numpy.py, numpy.divide(tilt, 180))
sintilt = numpy.sin(tiltang)
costilt = numpy.cos(tiltang)
Rt0 = [1, 0, 0]
Rt1 = [0, costilt, sintilt]
Rt2 = [0, sintiltm, costilt]
# do matrix multiply to get new rotation matrix
newmat = matmul3(Rt0, Rt1, Rt2, R0, R1, R2)
#again resets the matrix ... hmm
R0 = newmat[0]
R1 = newmat[1]
R2 = newmat[2]
test = re.match(r'roll=(\d+\.\d+)', arg, flags=re.IGNORECASE) # roll angle
if test:
roll = float(test.group(1))
if not (roll > -180) or not (roll < 180):
errMsg("ROLL=%s MUST BE LESS THAN 180 AND GREATER THAN -180"
) % roll
rollang = numpy.multiply(numpy.py, numpy.divide(roll, 180))
sinroll = numpy.sin(rollang)
cosroll = numpy.cos(rollang)
Rr0 = [cosroll, sinroll, 0]
Rr1 = [-sinroll, cosroll, 0]
Rr2 = [0, 0, 1]
# do matrix multiply to get new rotation matrix
newmat = matmul3(Rr0, Rr1, Rr2, R0, R1, R2)
R0 = newmat[0]
R1 = newmat[1]
R2 = newmat[2]
test = re.match(r'pef=(\d+\.\d+)', arg, flags=re.IGNORECASE) # pef angle
if test:
pef = float(test.group(1))
if not (pef > 0) or not (pef < numpy.pi):
errMsg("PEF=%s MUST BE LESS THAN PI AND GREATER THAN 0"
) % pef
test = re.match(r'idx=(\d+\.\d+)', arg, flags=re.IGNORECASE) # idx angle
if test:
idx = float(test.group(1))
if not (idx >= 0):
errMsg("IDX=%s MUST BE 0 or GREATER"
) % idx
di = idx
test = re.match(r'idy=(\d+\.\d+)', arg, flags=re.IGNORECASE)
if test:
idy = float(test.group(1))
if not (idy >= 0):
errMsg("IDY=%s MUST BE 0 or GREATER"
) % idy
dj = idy
test = re.match(r'odx=(\d+\.\d+)', arg, flags=re.IGNORECASE)
if test:
odx = float(test.group(1))
if not (odx >= 0):
errMsg("ODX=%s MUST BE 0 or GREATER"
) % odx
du = odx
test = re.match(r'ody=(\d+\.\d+)', arg, flags=re.IGNORECASE)
if test:
ody = float(test.group(1))
if not (ody > 0):
errMsg("ODY=%s MUST BE 0 or GREATER"
) % ody
dv = ody
test = re.match(r'zoom=(\d+\.\d+)', arg, flags=re.IGNORECASE)
if test:
zoom = float(test.group(1))
if not (zoom < -1 or zoom > 1):
errMsg("ODY=%s MUST BE GREATER THAN 1 OR LESS THAN -1"
) % zoom
test = re.match(r'bgcolor=([^ ]+)', arg, flags=re.IGNORECASE)
if test:
bgcolor = test.group(1)
test = re.match(r'skycolor=([^ ]+)', arg, flags=re.IGNORECASE)
if test:
skycolor = test.group(1)
test = re.match(r'vp=([^ ]+)', arg, flags=re.IGNORECASE)
if test:
vp = test.group(1).lower()
if vp not in [
"background", "dither", "edge",
"mirror", "random", "tile", "transparent"
]:
errMsg("VP=%s IS NOT A VALID VALUE" % (vp))
test = re.match(r'auto=([^ ]+)', arg, flags=re.IGNORECASE)
if test:
auto = test.group(1).lower()
if auto not in [
"c", "zc", "out"
]:
errMsg("AUTO=%s IS NOT A VALID VALUE" % (auto))
#
# get infile and outfile
infile = sys.argv[-2]
outfile = sys.argv[-1]
for a in [infile, outfile]:
if re.match(r'.*=.*', a):
errMsg("%s is not a valid filepath" % a)
# setup temporary images and auto delete upon exit
# use mpc/cache to hold input image temporarily in memory
pid = os.getpid()
tmpA = "%s/3Drotate_%s.mpc" % (directory, pid)
tmpB = "%s/3Drotate_%s.cache" % (directory, pid)
os.unlink(tmpA,tmpB)
os.unlink(tmpA,tmpB)
# test that infile provided
if not os.path.exists(infile):
errMsg("NO INPUT FILE SPECIFIED")
# test that outfile provided
if not outfile:
errMsg("NO OUTPUT FILE SPECIFIED")
cmd = ['convert', '-quiet', '-regard-warnings', infile, '+repage', tmpA]
call_cmd(cmd)
if not pef:
pef = 1
# get input image width and height
imagesize()
maxwidth = width - 1
maxheight = height - 1
# deal with auto adjustments to values
if auto == "zc":
du = 0
dv = 0
zoom = 1
elif auto == "c":
du = 0
dv = 0
# convert offsets of rotation point to relative to pixel 0,0
di = numpy.divide(numpy.add(di, numpy.divide(numpy.subtract(width,1), 2)),1)
dj = numpy.divide(
numpy.add(dj, numpy.divide(numpy.subtract(height, 1), 2)), 1)
du = numpy.divide(du, 1)
dv = numpy.divide(dv, 1)
# convert zoom to scale factors
if zoom >= 1:
sx = numpy.divide(1, zoom)
sy = sx
elif zoom <= -1:
sx = numpy.divide(-zoom, 1)
sy = sx
#{{{explanation
# Consider the picture placed on the Z=0 plane and the camera a distance
# Zc=f above the picture plane looking straight down at the image center.
# Now the perspective equations (in 3-D) are defined as (x,y,f) = M (X',Y',Z'),
# where the camera orientation matrix M is the identity matrix but with M22=-1
# because the camera is looking straight down along -Z.
# Thus a reflection transformation relative to the ground plane coordinates.
# Let the camera position Zc=f=(sqrt(ins*ins + inl*inl)) / ( 2 tan(fov/2) )
# Now we want to rotate the ground points corresponding to the picture corners.
# The basic rotation is (X',Y',Z') = R (X,Y,0), where R is the rotation matrix
# involving pan, tilt and roll.
# But we need to convert (X,Y,0) to (X,Y,1) and also to offset for Zc=f
# First we note that (X,Y,0) = (X,Y,1) - (0,0,1)
# Thus the equation becomes (x,y,f) = M {R [(X,Y,1) - (0,0,1)] - (0,0,Zc)} = MT (X,Y,1)
# But R [(X,Y,1) - (0,0,1)] = R [II (X,Y,1) - S (X,Y,1)] = R (II-S) (X,Y,1), where
# II is the identity matrix and S is an all zero matrix except for S22=1.
# Thus (II-S) is the identity matrix with I22=0 and
# RR = R (II-S) is just R with the third column all zeros.
# Thus we get (x,y,f) = M {RR (X,Y,1) - (0,0,Zc)}.
# But M {RR (X,Y,1) - (0,0,Zc)} = M {RR(X,Y,1) - D (X,Y,1)}, where
# D is an all zero matrix with D22 = Zc = f.
# So that we get M (RR-D) (X,Y,1) = MT (X,Y,1), where
# where T is just R with the third column (0,0,-f), i.e. T02=0, T12=0, T22=-f
# But we need to allow for scaling and offset of the output coordinates and
# conversion from (x,y,f) to (u,v,1)=O and conversion of input coordinates
# from (X,Y,1) to (i,j,1)=I.
# Thus the forward transformation becomes AO=MTBI or O=A'MTBI or O=PI,
# where prime means inverse.
# However, to do the scaling of the output correctly, need to offset by the input
# plus output offsets, then scale, which is all put into A'.
# Thus the forward transformation becomes AO=MTBI or O=A'MTBI where A'=Ai
# but we will merge A'M into Aim
# Thus the inverse transform becomes
# I=QO where Q=P'
# A=output scaling, offset and conversion matrix
# B=input offset and conversion matrix (scaling only needs to be done in one place)
# M=camera orientation matrix
# R=image rotation matrix Rroll Rtilt Rpan
# T=matrix that is R but R33 offset by f + 1
# O=output coords vector (i,j,1)
# I=input coords vector (u,v,1)=(is,il,1)
# P=forward perspective transformation matrix
# Q=inverse perspective transformation matrix
#
# For a 35 mm camera whose film format is 36mm wide and 24mm tall, when the focal length
# is equal to the diagonal, the field of view is 53.13 degrees and this is
# considered a normal view equivalent to the human eye.
# See http://www.panoramafactory.com/equiv35/equiv35.html
# Max limit on dfov is 180 degrees (pef=3.19) where get single line like looking at picture on edge.
# Above this limit the picture becomes like the angles get reversed.
# Min limit on dfov seems to be slightly greater than zero degrees.
# Practical limits on dfov depend upon orientation angles.
# For tilt=45, this is about 2.5 dfov (pef=2.5). Above this, some parts of the picture
# that are cut off at the bottom, get wrapped and stretched in the 'sky'.
#}}}
dfov = numpy.divide(
numpy.multpily(180, numpy.arctan(36/24)), numpy.pi)
pfact = 1
if pef == 0: #fixme
pfact = numpy.divide(0.01, dfov)
else:
pfact = pef
#compute new field of view based upon pef (pfact)
dfov = numpy.multiply(pfact, dfov)
dfov2 = numpy.divide(dfov, 2)
arg = numpy.multiply(numpy.pi, numpy.divide(dfov, 180))
sfov = numpy.sin(arg)
cfov = numpy.cos(arg)
tfov = numpy.divide(sfov, cfov)
# calculate focal length in same units as wall (picture) using dfov
diag = numpy.sqrt(
numpy.multiply(width, width), numpy.multiply(height, height))
focal = numpy.divide(diag, numpy.multiply(2, tfov))
# calculate forward transform matrix Q
# define the input offset and conversion matrix
dim = -di
B0 = [1, 0, dim]
B1 = [0, -1, dj]
B2 = [0, 0, 1]
# define the output scaling, offset and conversion matrix inverse Ai and merge with M
# to become Aim
#A0=($sx 0 $sx*(-$du-$di))
#A1=(0 -$sy $sy*($dv+$dj))
#A2=(0 0 -$focal)
#M0=(1 0 0)
#M1=(0 1 0)
#M2=(0 0 -1)
aim00 = numpy.divide(1, sx)
aim02 = -numpy.divide(
numpy.multiply(sx, numpy.add(di, du)), numpy.multiply(sx, focal))
aim11= -1 / $sy" | bc`
aim12= -($sy * ($dj + $dv)) / ($sy * $focal)" | bc`
aim22= -1 / $focal" | bc`
Aim0=($aim00 0 $aim02)
Aim1=(0 $aim11 $aim12)
Aim2=(0 0 $aim22)
# now do successive matrix multiplies from right towards left of main equation P=A'RB
# convert R to T by setting T02=T12=0 and T22=-f
focalm=`echo "scale=10; - $focal" | bc`
T0=(${R0[0]} ${R0[1]} 0)
T1=(${R1[0]} ${R1[1]} 0)
T2=(${R2[0]} ${R2[1]} $focalm)
# multiply T x B = P
p_mat = matmul3("${T0[*]}","${T1[*]}","${T2[*]}","${B0[*]}","${B1[*]}","${B2[*]}")
# multiply Aim x P = P
newmat = matmul3("${Aim0[*]}","${Aim1[*]}","${Aim2[*]}",p_mat[0],p_mat[1],p_mat[2])
# the resulting P matrix is now the perspective coefficients for the inverse transformation
P00= newmat[0][0]
P01= newmat[0][1]
P02= newmat[0][2]
P10= newmat[1][0]
P11= newmat[1][1]
P12= newmat[1][2]
P20= newmat[2][0]
P21= newmat[2][1]
P22= newmat[2][2]
# project input corners to output domain
#echo "UL"
i=0
j=0
u1, v1 = forwardProject(newmat, i, j) #using Aim matrix and p_mat
i=maxwidth
j=0
u2, v2 = forwardProject(newmat, i, j) #using Aim matrix and p_mat
i=maxwidth
j=maxheight
u3, v3 = forwardProject(newmat, i, j) #using Aim matrix and p_mat
i=0
j=maxheight
u4, v4 = forwardProject(newmat, i, j) #using Aim matrix and p_mat
# deal with adjustments for auto settings
# first get the bounding box dimensions
uArr=($u1 $u2 $u3 $u4)
vArr=($v1 $v2 $v3 $v4)
index=0
umin=1000000
umax=-1000000
vmin=1000000
vmax=-1000000
while [ $index -lt 4 ]
do
[ `echo "${uArr[$index]} < $umin" | bc` -eq 1 ] && umin=${uArr[$index]}
[ `echo "${uArr[$index]} > $umax" | bc` -eq 1 ] && umax=${uArr[$index]}
[ `echo "${vArr[$index]} < $vmin" | bc` -eq 1 ] && vmin=${vArr[$index]}
[ `echo "${vArr[$index]} > $vmax" | bc` -eq 1 ] && vmax=${vArr[$index]}
index=`expr $index + 1`
done
delu=`echo "scale=10; $umax - $umin + 1" | bc`
delv=`echo "scale=10; $vmax - $vmin + 1" | bc`
if [ "$auto" = "c" ]
then
offsetu=`echo "scale=10; ($width - $delu) / 2" | bc`
offsetv=`echo "scale=10; ($height - $delv) / 2" | bc`
u1=`echo "scale=0; $offsetu + ($u1 - $umin)" | bc`
v1=`echo "scale=0; $offsetv + ($v1 - $vmin)" | bc`
u2=`echo "scale=0; $offsetu + ($u2 - $umin)" | bc`
v2=`echo "scale=0; $offsetv + ($v2 - $vmin)" | bc`
u3=`echo "scale=0; $offsetu + ($u3 - $umin)" | bc`
v3=`echo "scale=0; $offsetv + ($v3 - $vmin)" | bc`
u4=`echo "scale=0; $offsetu + ($u4 - $umin)" | bc`
v4=`echo "scale=0; $offsetv + ($v4 - $vmin)" | bc`
elif [ "$auto" = "zc" ]
then
if [ `echo "$delu > $delv" | bc` -eq 1 ]
then
del=$delu
offsetu=0
offsetv=`echo "scale=10; ($height - ($delv * $width / $delu)) / 2" | bc`
else
del=$delv
offsetu=`echo "scale=10; ($width - ($delu * $height / $delv)) / 2" | bc`
offsetv=0
fi
u1=`echo "scale=0; $offsetu + (($u1 - $umin) * $width / $del)" | bc`
v1=`echo "scale=0; $offsetv + (($v1 - $vmin) * $height / $del)" | bc`
u2=`echo "scale=0; $offsetu + (($u2 - $umin) * $width / $del)" | bc`
v2=`echo "scale=0; $offsetv + (($v2 - $vmin) * $height / $del)" | bc`
u3=`echo "scale=0; $offsetu + (($u3 - $umin) * $width / $del)" | bc`
v3=`echo "scale=0; $offsetv + (($v3 - $vmin) * $height / $del)" | bc`
u4=`echo "scale=0; $offsetu + (($u4 - $umin) * $width / $del)" | bc`
v4=`echo "scale=0; $offsetv + (($v4 - $vmin) * $height / $del)" | bc`
fi
#
# now do the perspective distort
if [ "$auto" = "out" ]
then
distort="+distort"
else
distort="-distort"
fi
im_version=`convert -list configure | \
sed '/^LIB_VERSION_NUMBER /!d; s//,/; s/,/,0/g; s/,0*\([0-9][0-9]\)/\1/g' | head -n 1`
if [ "$im_version" -lt "06030600" ]
then
convert $tmpA -virtual-pixel $vp -background $bgcolor \
-mattecolor $skycolor $distort Perspective \
"0,0 $maxwidth,0 $maxwidth,$maxheight 0,$maxheight $u1,$v1 $u2,$v2 $u3,$v3 $u4,$v4" $outfile
else
convert $tmpA -virtual-pixel $vp -background $bgcolor \
-mattecolor $skycolor $distort Perspective \
"0,0 $u1,$v1 $maxwidth,0 $u2,$v2 $maxwidth,$maxheight $u3,$v3 0,$maxheight $u4,$v4" $outfile
fi
exit 0
|