summaryrefslogtreecommitdiff
path: root/lib/Pb
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Pb')
-rwxr-xr-xlib/Pb/Break/__init__.py169
-rwxr-xr-xlib/Pb/Break/__init__.py~205
-rwxr-xr-xlib/Pb/Generate/__init__.py138
-rwxr-xr-xlib/Pb/Gradient/__init__.py183
-rwxr-xr-xlib/Pb/Grid/__init__.py159
-rwxr-xr-xlib/Pb/Landscape/__init__.py48
-rw-r--r--lib/Pb/Landscape/_base64img1
-rwxr-xr-xlib/Pb/Landscape/landscape163
-rwxr-xr-xlib/Pb/Pattern/__init__.py84
-rw-r--r--lib/Pb/__init__.py130
-rw-r--r--lib/Pb/inspect_objects_example.py15
11 files changed, 1295 insertions, 0 deletions
diff --git a/lib/Pb/Break/__init__.py b/lib/Pb/Break/__init__.py
new file mode 100755
index 0000000..cf12cc2
--- /dev/null
+++ b/lib/Pb/Break/__init__.py
@@ -0,0 +1,169 @@
+#!/usr/bin/python2.7
+import os
+import sys
+import random
+import re
+import urllib
+import inspect
+from Config import *
+from Pb import Pb
+from Params import Params
+
+DEFAULT_FINALFORMAT = "png";
+
+_subtle_break_mark = 'pron'
+_extreme_break_mark = 'sugar'
+
+_header_offset = 2000
+_default_breakmode = "subtle"
+
+class PbBreak(Pb): #FIXME in db gallery
+ example_params = {
+ "url" : "http://i.asdf.us/im/de/HolyMountain2_1322275112_seamonkey.gif",
+ "breaktype" : "RGB_WASH",
+ "finalformat" : "png",
+ "breakmode" : "extreme",
+ "breakangle" : "10",
+ "username" : "donkey",
+ "expanded" : "false"
+ }
+ def __init__(self, **kwargs):
+ super(PbBreak,self).__init__();
+ _definitions = {
+ 'username': { 'type': 'string' },
+ 'breaktype': { 'type': 'string' },
+ 'breakmode': {
+ 'type': 'enum',
+ 'enum_values' : ['subtle', 'extreme', 'gradual'] ,
+ 'default' : _default_breakmode
+ },
+ 'breakangle': { 'type': 'float' },
+ 'expanded': { 'type': 'bool' },
+ 'url': { 'type': 'img_url' },
+ 'finalformat': { 'type': 'enum', 'enum_values' : ['png', 'gif', 'jpg' ] }
+ }
+ self.params.definitions_import(_definitions, kwargs, classname=self.__class__.__name__);
+ self._files_created.append(self.params.url.path)
+ self.params.breaktype.set_val(self._get_breaktype(str(self.params.breaktype)))
+
+ #psd returns an animation
+ if not self.params.finalformat and self.params.url.mimetype == "gif":
+ self.params.finalformat.set_val("gif")
+ elif self.params.breaktype == 'miff':
+ self.params.finalformat.set_val("jpg")
+ self.params.breakmode.set_val("subtle")
+ elif not self.params.finalformat:
+ self.params.finalformat.set_val(DEFAULT_FINALFORMAT)
+ self._width_and_height_set(filepath=self.params.url.path)
+
+ self.filename, self.filepath = self._filename_filepath_create(url=self.params.url.url, extension=self.params.finalformat)
+ self._conversion_file = self._tempfilepath_create(namepart="conversion", extension=self.params.breaktype)
+
+ def _get_breaktype(self, key):
+ #{{{ conversion table
+ breaktypeTranslate = {
+ 'CLASSIC':'jpg',
+ 'REDUX':'pcds',
+ 'BLURRY_BREAK':'viff',
+ 'BLURRY_BREAK_2':'mat',
+ 'SWIPE':'miff',
+ 'RGB_WASH':'psd',
+ 'RGB_WASH_2':'psb',
+ 'NOISY_BREAK':'palm',
+ 'NOISY_BREAK_2':'fig',
+ 'BROKEN_VIGNETTE':'pbm',
+ 'FAX_MACHINE':'cals',
+ 'STRIPES':'exr',
+ 'PHOTOCOPY':'art',
+ }
+ #}}}
+ return breaktypeTranslate[key]
+
+#{{{#########rotatefunctions#######################################
+ def _rotate(self):
+ cmd = [BIN_CONVERT,self.params.url.path,"-rotate",self.params.breakangle,"+repage",self.params.url.path]
+ self._call_cmd(cmd)
+
+ def _rotate_back(self):
+ angle = str(360-int(self.params.breakangle))
+ cmd = [BIN_CONVERT,self.filepath,"-rotate",angle,"+repage",self.filepath]
+ self._call_cmd(cmd)
+ if not self.params.expanded:
+ cmd = [BIN_CONVERT,self.filepath,"-gravity","Center","-crop","{}x{}+0+0".format(
+ self.width, self.height),"+repage",self.filepath]
+ self._call_cmd(cmd)
+#}}}
+
+ def _subtle_break(self):
+ #assume the header is no longer than _header_offset bytes
+ breakpoint = random.randint(_header_offset, len(self._file_data))
+ newfile = self._file_data[0:breakpoint] \
+ + _subtle_break_mark \
+ + self._file_data[breakpoint:]
+ self._file_data = newfile[0:len(self._file_data)]
+
+ def _extreme_break(self):
+ increment = len(self._file_data)/10;
+ i = 0
+ newfile = "";
+ for b in self._file_data:
+ if i > _header_offset and not (i % increment):
+ b += _extreme_break_mark
+ newfile += b
+ i += 1
+ self._file_data = newfile[0:len(self._file_data)]
+
+
+ def _enforce_jpg(self):
+ if self.params.breaktype in [ "exr", "bmp", "miff" ] and not re.match(r'jpe?g$', self.params.url.mimetype, re.IGNORECASE):
+ jpg_file = self._tempfilepath_create(extension="jpg")
+ self._call_cmd([BIN_CONVERT,self.params.url.path, jpg_file])
+ self._files_created.append(jpg_file)
+ self._conversion_file = jpg_file
+
+ def _first_conversion(self):
+ if self.params.url.mimetype == self.params.breaktype:
+ self._conversion_file = self.params.url.path
+ return
+ self._call_cmd([BIN_CONVERT, self.params.url.path, self._conversion_file])
+ self._files_created.append(self._conversion_file)
+
+ def _prepare_filedata(self):
+ if self.params.url.mimetype == "gif" and self.params.breaktype not in [ 'mat', 'psd' ]:
+ self._choose_gif_frame(self.params.url.path)
+ if self.params.breakangle:
+ self._rotate()
+ self._enforce_jpg();
+ self._first_conversion();
+ self._file_data = self._file_read(self._conversion_file)
+ if not self._file_data:
+ self.err_warn("Unable to get file data");
+
+ def _add_false_data(self):
+ if self.params.breakmode == "subtle":
+ self._subtle_break()
+ elif self.params.breakmode == "extreme":
+ self._extreme_break()
+ f = open(self._conversion_file, 'w')
+ f.write(self._file_data)
+ f.close();
+
+ def _final_conversion(self):
+ self._call_cmd( [BIN_CONVERT, self._conversion_file, self.filepath])
+ def psd_psbfilepath(num):
+ return os.path.join(re.sub(r'\.', "-%s." % num, self.filepath))
+ if str(self.params.breaktype) == 'psd':
+ self._call_cmd(['mv', psd_psbfilepath(1), self.filepath])
+ self._files_created.append(psd_psbfilepath(0))
+ if str(self.params.breaktype) == 'psb':
+ self._call_cmd(['mv', psd_psbfilepath(0), self.filepath])
+ self._files_created.append(psd_psbfilepath(1))
+ if self.params.breakangle:
+ self._rotate_back()
+
+ def create(self):
+ self._prepare_filedata();
+ self._add_false_data();
+ self._final_conversion()
+ self._cleanup()
+
diff --git a/lib/Pb/Break/__init__.py~ b/lib/Pb/Break/__init__.py~
new file mode 100755
index 0000000..c1064e2
--- /dev/null
+++ b/lib/Pb/Break/__init__.py~
@@ -0,0 +1,205 @@
+#!/usr/bin/python2.7
+import os
+import sys
+import random
+import re
+import urllib
+import inspect
+from Config import *
+from Pb import Pb
+from Pb.Params import Params
+
+DEFAULT_FINALFORMAT = "png";
+SUBTLE_BREAK_MARK = 'pron'
+EXTREME_BREAK_MARK = 'sugar'
+
+HEADER_OFFSET = 2000
+
+class Breaker(Pb):
+ def __init__(self, url=None, breaktype=None, finalformat=DEFAULT_FINALFORMAT,
+ breakmode=None, breakangle=None, username=None, expanded=None, firsttime=None):
+ super(Breaker,self).__init__();
+
+ self.params.breaktype = self._get_breaktype(breaktype);
+ self.params.url = url
+
+ _frame = inspect.currentframe();
+ _args_vals = inspect.getargvalues(_frame);
+ for arg in _args_vals.args:
+ if arg == "self":
+ continue
+ sys.stderr.write(str(arg) + "\n")
+ try:
+ if arg not in ['breaktype', 'url']:
+ sys.stderr.write("Yoooo");
+ sys.stderr.write(arg)
+ strarg = str(_args_vals.locals.get(arg))
+ django self.bool_correct(strarg)
+ self.params.__setattr__("dingo", django)
+# self.params.__setattr__(arg, self.bool_correct(_args_vals.locals.get(arg)))
+ except Exception as e:
+ sys.stderr.write("\n"+str(e)+"\n")
+ sys.exit(1);
+ self.params = Params(**self.params);
+
+ self.tag = "imBreak"
+ self.commands = [];
+ self._now = self.now()
+ self.files_created = []
+
+ self.basename, self._first_format = self._get_filename_and_type_from_url();
+ self._downloaded_file = self.tempname_create(basename=self.basename, fmt=self._first_format)
+
+ try:
+ self.download(self.params.url, self._downloaded_file)
+ self.files_created.append(self._downloaded_file)
+ except Exception as e:
+ self.err_warn(str(e))
+
+ self._gif_frames = self.gif_frames(self._downloaded_file)
+ self._gif_frames = self._gif_frames if len(self._gif_frames) > 1 else False
+ self.width, self.height = self.dimensions(self._downloaded_file) # same here
+
+ if not self.params.finalformat and self._gif_frames:
+ self.params.finalformat = 'gif'
+ if self.params.breaktype == 'miff':
+ self.params.finalformat = 'jpg'
+ self.params.breakmode = 'subtle'
+ #final filepath is stored in self.filepath
+ self.filename = "{}.{}".format(self.basename, self.params.finalformat)
+ self.filepath = os.path.join(self._working_dir, self.filename)
+ self._conversion_file = self.tempname_create(basename=self.basename, fmt=self.params.breaktype);
+
+ def _call_cmd(self, cmd):
+ super(Breaker,self)._call_cmd(cmd, error)
+ self.commands.append(" ".join(cmd));
+
+ def _get_breaktype(self, key):
+ #{{{ conversion table
+ breaktypeTranslate = {
+ 'CLASSIC':'jpg',
+ 'REDUX':'pcds',
+ 'BLURRY_BREAK':'viff',
+ 'BLURRY_BREAK_2':'mat',
+ 'SWIPE':'miff',
+ 'RGB_WASH':'psd',
+ 'RGB_WASH_2':'psb',
+ 'NOISY_BREAK':'palm',
+ 'NOISY_BREAK_2':'fig',
+ 'BROKEN_VIGNETTE':'pbm',
+ 'FAX_MACHINE':'cals',
+ 'STRIPES':'exr',
+ 'PHOTOCOPY':'art',
+ }
+ #}}}
+ return breaktypeTranslate[key]
+
+#{{{#########rotatefunctions#######################################
+ def _rotate(self):
+ cmd = [BIN_CONVERT,self._downloaded_file,"-rotate",self.params.breakangle,"+repage",self._downloaded_file]
+ self._call_cmd(cmd)
+
+ def _rotate_back(self):
+ angle = str(360-int(self.params.breakangle))
+ cmd = [BIN_CONVERT,self.filepath,"-rotate",angle,"+repage",self.filepath]
+ self._call_cmd(cmd)
+ if not self.params.expanded:
+ cmd = [BIN_CONVERT,self.filepath,"-gravity","Center","-crop","{}x{}+0+0".format(
+ self.width, self.height),"+repage",self.filepath]
+ self._call_cmd(cmd)
+#}}}
+ def _subtle_break(self):
+ #assume the header is no longer than HEADER_OFFSET bytes
+ breakpoint = random.randint(HEADER_OFFSET, len(self.file_data))
+ newfile = self.file_data[0:breakpoint] \
+ + SUBTLE_BREAK_MARK \
+ + self.file_data[breakpoint:]
+ self.file_data = newfile[0:len(self.file_data)]
+
+ def _extreme_break(self):
+ increment = len(self.file_data)/10;
+ i = 0
+ newfile = "";
+ for b in self.file_data:
+ if i > HEADER_OFFSET and not (i % increment):
+ b += EXTREME_BREAK_MARK
+ newfile += b
+ i += 1
+ self.file_data = newfile[0:len(self.file_data)]
+
+ def _choose_frame(self):
+ frame = random.choice(self._gif_frames)
+ self._call_cmd([BIN_CONVERT, frame, self._downloaded_file])
+
+ def _enforce_jpg(self):
+ if self.params.breaktype in [ "exr", "bmp", "miff" ] and not re.match(r'jpe?g$', self._first_format, re.IGNORECASE):
+ jpg_file = self.tempname_create(basename=self.basename, fmt="jpg")
+ self._call_cmd([BIN_CONVERT,self._downloaded_file,jpg_file])
+ self._call_cmd(["rm",self._downloaded_file])
+ self._downloaded_file = jpg_file
+
+ def _first_conversion(self):
+ if self._first_format == self.params.breaktype:
+ self._downloaded_file = self._conversion_file
+ return
+ self._call_cmd([BIN_CONVERT, self._downloaded_file, self._conversion_file])
+ self.files_created.append(self._conversion_file)
+
+ def _prepare_filedata(self):
+ if self._gif_frames:
+ self._choose_frame()
+ if self.params.breakangle:
+ self._rotate()
+ self._enforce_jpg();
+ self._first_conversion();
+ self.file_data = self._file_read(self._conversion_file)
+ if not self.file_data:
+ self.err_warn("Unable to get file data");
+
+ def _add_false_data(self, breakmode):
+ if breakmode == "subtle":
+ self._subtle_break()
+ elif breakmode == "extreme":
+ self._extreme_break()
+ f = open(self._conversion_file, 'w')
+ f.write(self.file_data)
+ f.close();
+
+ def _final_conversion(self):
+ self._call_cmd( [BIN_CONVERT, self._conversion_file, self.filepath])
+ def psd_psbfilepath(num):
+ return os.path.join(self._working_dir, "{}-{}.{}".format(self.basename, num, self.params.finalformat))
+ if self.params.breaktype == 'psd':
+ self._call_cmd(['mv', psd_psbfilepath(1), self.filepath])
+ self.files_created.append(psd_psbfilepath(0))
+ if self.params.breaktype == 'psb':
+ self._call_cmd(['mv', psd_psbfilepath(0), self.filepath])
+ self.files_created.append(psd_psbfilepath(1))
+ if self.params.breakangle:
+ self._rotate_back()
+
+ def _cleanup(self):
+ cmd = ["rm"]+self.files_created
+ self._call_cmd(cmd)
+
+ def create(self, breakmode=""):
+ if not breakmode: breakmode = self.params.breakmode
+ self._prepare_filedata();
+ self._add_false_data(breakmode);
+ self._final_conversion()
+ self._cleanup()
+
+ @classmethod
+ def test(cls):
+ TEST_PARAMS = {
+ "url" : "http://i.asdf.us/im/27/1424816234661dumpfmpfifferkinggr_1424816412_pfifferking.gif" ,
+ "breaktype" : "RGB_WASH",
+ "finalformat" : "png",
+ "breakmode" : "extreme",
+ "breakangle" : "10",
+ "username" : "donkey",
+ "expanded" : "false"
+ }
+ b = cls(**TEST_PARAMS)
+ b.create();
+ print b.filepath
diff --git a/lib/Pb/Generate/__init__.py b/lib/Pb/Generate/__init__.py
new file mode 100755
index 0000000..e50e514
--- /dev/null
+++ b/lib/Pb/Generate/__init__.py
@@ -0,0 +1,138 @@
+#!/usr/bin/python2.7
+import sys
+import os
+from Config import *
+from Pb import Pb
+_default_tag = "im"
+
+_gravity_params = ["NorthWest","North","NorthEast","West","Center","East","SouthWest","South","SouthEast"]
+_gravity_default = "Center"
+_compose_params = [ "Over", "ATop", "Dst_Over", "Dst_In", "Dst_Out", "Multiply",
+ "Screen", "Divide", "Plus", "Difference", "Exclusion",
+ "Lighten", "Darken", "Overlay", "Hard_Light", "Soft_Light",
+ "Linear_Dodge", "Linear_Burn", "Color_Dodge", "Color_Burn" ]
+_dispose_params = ["None","Previous","Background"]
+_dispose_default = "None"
+class PbGenerate(Pb):
+ example_params = {
+#{{{ example params
+ 'nearest': 'true',
+ # 'height': None,
+ 'compose': 'Soft_Light',
+ 'coalesce': 'true',
+ 'dispose': 'None',
+ 'gravity': 'Center',
+ 'width': '200',
+ 'black': 'black',
+ 'tile': 'true',
+ 'white': 'white',
+ 'contrast': '100',
+ 'hue': '90',
+ 'saturation': '100',
+ 'merge_early': 'true',
+ 'format': 'gif',
+ 'background': 'http://i.asdf.us/im/bc/new_1430440747.gif',
+ 'subtract': '#EE7AE9',
+ 'transparent': 'true',
+ # 'rotate': None,
+ 'name': 'yo',
+ # 'brightness': None,
+ 'url': 'http://asdf.us/im/new.gif',
+ 'flop': 'true',
+ 'flip': 'false',
+ 'callback': 'jsonp1430442384162',
+ 'fuzz': '5'
+#}}}
+ }
+ def __init__(self, **kwargs):
+ super(PbGenerate,self).__init__();
+ _definitions = {
+ #IMAGES
+ "url": { 'type': "img_url" },
+ "background": { 'type': "img_url" },
+
+ #BOOLS
+ "coalesce": { 'type': "bool" },
+ "nearest": { 'type': "bool" },
+ "merge_early": { 'type': "bool" },
+ "flip": { 'type': "bool" },
+ "flop": { 'type': "bool" },
+ "tile": { 'type': "bool" },
+ "transparent": { 'type': "bool" },
+
+ #COLORS
+ "black": { 'type': "color", 'default': 'black' },
+ "white": { 'type': "color", 'default': 'white' },
+ "subtract": { 'type': "color" },
+
+ #INTS
+ "fuzz": { 'type': "int" },
+ "width": { 'type': "int" },
+ "height": { 'type': "int" },
+ "brightness": { 'type': "int" },
+ "contrast": { 'type': "int" },
+ "saturation": { 'type': "int" },
+ "rotate": { 'type': "int" },
+ "hue": { 'type': "int" },
+
+ #ENUMS
+ "compose": { 'type': "enum", 'enum_values': _compose_params, 'default': "Atop" },
+ "gravity": { 'type': "enum", 'enum_values': _gravity_params, 'default': _gravity_default },
+ "dispose": { 'type': "enum", 'enum_values': _dispose_params, 'default': "None" },
+ "format": { 'type': "enum", 'enum_values': OUTPUT_IMAGE_TYPES, 'default': DEFAULT_FINALFORMAT },
+
+ #STRINGS
+ "username": { 'type': "string" },
+ "callback": { 'type': "string" },
+ }
+ self.tag = _default_tag
+ self.params.definitions_import(_definitions, kwargs, classname=self.__class__.__name__);
+ if self.params.background: self.tag = self.params.compose
+ if self.params.transparent: self.tag = self.params.transparent
+
+ self.filename, self.filepath = self._filename_filepath_create(url=self.params.url['url'], extension=self.params.format)
+
+ def _composite (self):
+ cmd = [
+ BIN_CONVERT, self.params.background['path'],
+ "null:", self.filepath, "-matte",
+ "-dispose", self.params.dispose,
+ "-gravity", self.params.gravity,
+ "-compose", self.params.compose, "-layers", "composite",
+ self.filepath ]
+ self._call_cmd(cmd);
+
+ def _convert(self):
+ cmd = [BIN_CONVERT, self.params.url['path'] ]
+ if self.params.rotate: cmd += ["-rotate", self.params.rotate ]
+ if self.params.flip: cmd += ["-flip"]
+ if self.params.flop: cmd += ["-flop"]
+ if self.params.transparent:
+ if self.params.fuzz:
+ cmd += ["-fuzz", "{}%".format(self.params.fuzz) ]
+ cmd += [ "-transparent", self.params.subtract ]
+ if self.params.width or self.params.height:
+ if self.params.nearest and self.params.format == "gif":
+ cmd += [ "-coalesce","+map","-interpolate","Nearest","-interpolative-resize" ]
+ else:
+ cmd.append("-resize")
+ cmd += [ "{}x{}".format(self.params.width or "", self.params.height or "") ]
+ if self.params.black != "black" or self.params.white != 'white':
+ cmd += [ "+level-colors" , "{},{}".format(self.params.black, self.params.white) ]
+ if self.params.contrast: cmd += [ '-contrast-stretch', self.params.contrast ]
+ if self.params.brightness or self.params.saturation or self.params.hue:
+ cmd += [
+ "-modulate", "{},{},{}".format(
+ (self.params.brightness or 100),
+ (self.params.contrast or 100),
+ (self.params.hue or 100)
+ )]
+ cmd.append("-coalesce"); #why? #FIXME
+ cmd += [ self.filepath ];
+ self._call_cmd(cmd);
+
+ def create(self):
+ self._convert()
+ if self.params.background:
+ self._composite()
+ self._cleanup();
diff --git a/lib/Pb/Gradient/__init__.py b/lib/Pb/Gradient/__init__.py
new file mode 100755
index 0000000..00adbf1
--- /dev/null
+++ b/lib/Pb/Gradient/__init__.py
@@ -0,0 +1,183 @@
+#!/usr/bin/python2.7
+import re
+import time
+from subprocess import call
+import simplejson as json
+import sys
+import os
+import sha
+from Config import *
+from Pb import Pb
+
+_default_color_1 = "white"
+_default_color_2 = "black"
+
+_default_bevel_percent = "12";
+
+_halftone_values = {
+ "checkeredfade": "h6x6a",
+ "etchedtransition": "o8x8",
+ "bendaydots": "h16x16o",
+ "smallerdots1": "h8x8o",
+ "smallerdots2": "c7x7w",
+ "flatstripes": "o2x2",
+}
+
+class PbGradient(Pb):
+ example_params = {
+ "width" : "200",
+ "color1" : "#ffdead",
+ "color2" : "blue",
+ "stripes" : "true",
+ "stripenumber" : "20",
+ "gradienttype" : "radial",
+ "stripeintensity" : "20",
+ "halftone" : "checkeredfade",
+ "percentbeveled" : "30",
+ "flip" : "true",
+ "bevel" : "flatinner",
+ "rotate" : "20",
+ "height" : "200",
+ "filetype" : "jpg",
+ "username" : "whatever"
+ }
+ def __init__(self, **kwargs):
+ super(PbGradient,self).__init__();
+ _definitions = {
+ 'width': { 'type':'int', 'default': DEFAULT_WIDTH },
+ 'height': { 'type':'int', 'default' : DEFAULT_HEIGHT },
+ 'color1': { 'type':'color', 'default': _default_color_1 },
+ 'color2': { 'type':'color', 'default': _default_color_2 },
+ 'stripes': { 'type':'bool' },
+ 'stripenumber': { 'type':'int', 'default': 0 },
+ 'stripeintensity': { 'type':'int', 'default': 0 },
+ 'blurriness': { 'type':'int', 'default': 0 },
+ 'contrast': { 'type':'int', 'default': 100 },
+ 'brightness': { 'type':'int', 'default': 100 },
+ 'saturation': { 'type':'int', 'default': 100 },
+ 'hue': { 'type':'int', 'default': 100 },
+ 'halftone': { 'type':'enum', 'enum_values' : [
+ 'checkeredfade', 'etchedtransition', 'bendaydots',
+ 'smallerdots1', 'smallerdots2', 'flatstripes',
+ ] },
+ 'bevel': { 'type':'enum', 'enum_values' : [
+ 'flatout', 'flatinner', 'evenlyframed', 'biginner',
+ 'bigouter', 'dramaticflatout', 'dramaticflatinner',
+ ] },
+ 'percentbeveled': { 'type':'int', 'default': _default_bevel_percent },
+ 'tilt': { 'type':'int' },
+ 'rotate': { 'type':'int' },
+ 'flip': { 'type':'bool' },
+ 'flop': { 'type':'bool' },
+ 'filetype': { 'type':'enum', 'enum_values' : OUTPUT_IMAGE_TYPES, 'default': DEFAULT_FINALFORMAT },
+ 'gradienttype': { 'type':'enum', 'enum_values' : [
+ 'default', 'canvas', 'radial', 'colorspace',
+ 'mirrored', 'plasmawash', 'gradientwash', 'noise'
+ ], 'default': 'default' },
+ 'username': { 'type':'string' }
+ }
+ self.params.definitions_import(_definitions, kwargs, classname=self.__class__.__name__);
+
+ self.filename, self.filepath = self._filename_filepath_create()
+
+ def _filename_create(self, **kwargs):
+ _base = "{}{}-{}_{}".format(
+ self.__class__.__name__,
+ str(self.params.color1).replace('#','').replace('(','-').replace(')','-'),
+ str(self.params.color2).replace('#','').replace('(','-').replace(')','-'),
+ self._now,
+ )
+ if self.params.username: _base += "_%s" % self.params.username
+ return _base + ".%s" % self.params.filetype
+
+
+ def _build_cmd(self):
+ cmd = [BIN_CONVERT]
+ cmd.extend([
+ '-size',
+ "{}x{}".format(self.params.width,self.params.height)
+ ])
+
+ if self.params.rotate: cmd.extend(["-rotate", self.params.rotate])
+ if self.params.tilt: cmd.extend(["-distort","SRT",self.params.tilt])
+ if self.params.flip == "true": cmd.append("-flip")
+ if self.params.flop == "true": cmd.append("-flop")
+ if self.params.contrast: cmd.extend(["-contrast-stretch", self.params.contrast])
+ _gradients = {
+ "default" : "gradient:{}-{}".format(self.params.color1, self.params.color2),
+ "canvas" : ["canvas:{}".format(self.params.color1)],
+ "radial" : [
+ "radial-gradient:{}-{}".format( self.params.color1, self.params.color2)
+ ],
+ "colorspace" : [
+ "-colorspace",
+ "Gray",
+ "plasma:{}-{}".format(self.params.color1, self.params.color2)
+ ],
+ "mirrored" : [
+ "plasma:{}-{}".format(self.params.color1, self.params.color2),
+ "\(","+clone","-flop","\)",
+ "append"
+ ],
+ "plasmawash" : [
+ "plasma:{}-{}".format(self.params.color1, self.params.color2),
+ "-set","colorspace","HSB"
+ ],
+ "gradientwash" : [
+ "gradient:{}-{}".format(self.params.color1, self.params.color2),
+ "-set","colorspace","HSB"
+ ],
+ "noise" : ["xc:","+noise","Random","-virtual-pixel","tile"]
+ }
+ cmd += _gradients[str(self.params.gradienttype)]
+
+ if self.params.blurriness:
+ cmd.extend(["-blur","0x{}".format(self.params.blurriness),"-auto-level"])
+
+ if self.params.stripes == "true" and len(self.params.stripenumber):
+ cmd.extend(["-function","Sinusoid"])
+ if self.params.stripeintensity:
+ cmd.append("{},{}".format(self.params.stripenumber,self.params.stripeintensity))
+ else:
+ cmd.append(self.params.stripenumber)
+ if str(self.params.halftone) in _halftone_values:
+ cmd.extend([
+ "-ordered-dither",
+ _halftone_values[str(self.params.halftone)]
+ ])
+ cmd += [
+ '-modulate',
+ "{},{},{}".format(
+ self.params.brightness or "100",
+ self.params.saturation or "100",
+ self.params.hue or "100")
+ ]
+ cmd.append(self.filepath);
+ self._call_cmd(cmd)
+ if self.params.bevel: self._make_bevel()
+
+ def _get_bevelvalue(self):
+ w, h = map(int, (self.params.width, self.params.height))
+ if h >= w:
+ bevpercentval = str(int(self.params.percentbeveled)*0.005*int(h))
+ else:
+ bevpercentval = str(int(self.params.percentbeveled)*0.005*int(w))
+ return {
+ "flatout": ["-s",bevpercentval,"-m","outer"],
+ "flatinner": ["-s",bevpercentval,"-m","inner"],
+ "evenlyframed": ["-s ",bevpercentval,"-m", "split"],
+ "biginner": ["-s",bevpercentval,"-m","outer","-c","50","-b","red","-a","25"],
+ "bigouter": ["-s",bevpercentval,"-m","split","-c","50","-b","red","-a","25"],
+ "dramaticflatout": ["-s",bevpercentval,"-m","outer","-a","25","-b","blue"],
+ "dramaticflatinner": ["-s",bevpercentval,"-m","outer","-a","25","-b","blue"],
+ }[str(self.params.bevel)]
+
+ def _make_bevel(self):
+ cmd = [BEVELBORDER]
+ cmd += self._get_bevelvalue()
+ cmd += [ self.filepath, self.filepath]
+ self._call_cmd(cmd)
+
+ def create(self):
+ self._build_cmd()
+
diff --git a/lib/Pb/Grid/__init__.py b/lib/Pb/Grid/__init__.py
new file mode 100755
index 0000000..2f7ae4b
--- /dev/null
+++ b/lib/Pb/Grid/__init__.py
@@ -0,0 +1,159 @@
+import sys
+import re
+import os
+import simplejson as json
+import random
+from Config import DEFAULT_FINALFORMAT, DEFAULT_HEIGHT, DEFAULT_WIDTH, WORKING_DIR, OUTPUT_IMAGE_TYPES
+from Config import THREEDROTATE, GRID, BIN_CONVERT, BIN_COMPOSITE
+import tempfile
+from Pb import Pb
+
+_default_line_color = "silver"
+
+class PbGrid(Pb):
+ example_params = {
+ 'bgimage' : 'http://i.asdf.us/im/1a/imBreak_1424909483_xx_abridged___.gif',
+ 'planebgimage' : 'http://i.imgur.com/FICZtph.png',
+ 'tilt' : '30',
+ 'spacing' : '30',
+ 'hlines' : 'true',
+ 'roll' : '30',
+ 'shadow' : 'true',
+ 'trim' : 'true'
+ }
+ def __init__(self, **kwargs ):
+ super(PbGrid,self).__init__();
+ _definitions = {
+ 'width': { 'type':'int' },
+ 'height': { 'type':'int' },
+ 'linethickness': { 'type':'int', 'default': 1 },
+ 'opacity': { 'type':'float', "default": 1.0 },
+ 'linecolor': { 'type':'color', 'default': 'whitesmoke' },
+ 'linethickness': { 'type':'int' },
+ 'spacing': { 'type':'int', 'default': 10 },
+ 'vlines': { 'type':'bool' },
+ 'hlines': { 'type':'bool' },
+ 'shadow': { 'type':'bool' },
+ 'bgimage': { 'type':'img_url' },
+ 'bgcolor': { 'type':'color', 'default': 'transparent' },
+ 'imageinstead': { 'type':'img_url' },
+ 'planebgcolor': { 'type':'color', 'default': 'transparent' },
+ 'planebgimage': { 'type':'img_url' },
+ 'swing': { 'type':'int' },
+ 'tilt': { 'type':'int' },
+ 'roll': { 'type':'int' },
+ 'zoom': { 'type':'int' },
+ 'skycolor': { 'type':'color', 'default': 'transparent' },
+ 'transition': { 'type':'enum', 'enum_values' : ['background', 'dither', 'edge', 'mirror', 'random', 'tile'], 'default': 'background' },
+ 'trim': { 'type':'bool' },
+ 'finalformat': { 'type':'enum', 'enum_values' : OUTPUT_IMAGE_TYPES, 'default': DEFAULT_FINALFORMAT },
+ 'username': { 'type':'string' },
+ }
+ self.params.definitions_import(_definitions, kwargs, classname=self.__class__.__name__);
+ if self.params.imageinstead:
+ self.filename, self.filepath = self._filename_filepath_create(url=self.params.imageinstead['url'], extension=self.params.finalformat)
+ elif self.params.planebgimage:
+ self.filename, self.filepath = self._filename_filepath_create(url=self.params.planebgimage['url'], extension=self.params.finalformat)
+ else:
+ self.filename, self.filepath = self._filename_filepath_create(extension=self.params.finalformat)
+
+ #makes a canvas file...step 1 (if not bgimage)
+ def _make_canvas(self):
+ dimensions = "{}x{}".format(
+ self.params.width or DEFAULT_WIDTH,
+ self.params.height or DEFAULT_HEIGHT
+ )
+ if self.params.bgimage:
+ return
+ bgcolor = "xc:{}".format(self.params.bgcolor or 'transparent')
+ cmd = [ BIN_CONVERT, "-size", dimensions, bgcolor, self.filepath ]
+ self._call_cmd(cmd)
+
+ #2nd step-- run grid
+ def _grid_command(self):
+ cmd = [GRID]
+ if self.params.spacing:
+ if self.params.vlines:
+ width = 2 * int(self.params.width or DEFAULT_WIDTH)
+ cmd += ["-s","{},{}".format(self.params.spacing,width)]
+ elif self.params.hlines:
+ height = 2 * int(self.params.height or DEFAULT_HEIGHT)
+ cmd += ["-s", "{},{}".format(height,self.params.spacing)]
+ else:
+ cmd += ["-s",self.params.spacing]
+ cmd += [ "-c", self.params.linecolor or _default_line_color]
+ if self.params.linethickness: cmd += ['-t',self.params.linethickness]
+ if self.params.opacity: cmd += ['-o',self.params.opacity]
+ cmd += [ self.filepath, self.filepath ]
+ self._call_cmd(cmd)
+
+ def _shadow_cmd(self):
+ #convert 1.png \( +clone -background black -shadow 110x1+9+9 \) +swap -background none -layers merge +repage 2.png
+ cmd = [
+ BIN_CONVERT,
+ self.filepath,
+ "(","+clone","-background","black","-shadow","100x2+20+10",")",
+ "+swap","-background","none","-layers","merge","+repage" ,
+ self.filepath
+ ]
+ self._call_cmd(cmd)
+
+
+ def _threed_rotate_cmd (self):
+ #3rd step--run 3Drotate
+ cmd = [THREEDROTATE]
+ if self.params.swing: cmd += ["pan={}".format(self.params.swing)]
+ if self.params.tilt: cmd += ["tilt={}".format(self.params.tilt)]
+ if self.params.roll: cmd += ["roll={}".format(self.params.roll)]
+ if self.params.zoom:
+ cmd += ["zoom={}".format(self.params.zoom)]
+ if cmd == [THREEDROTATE]: #if nothing has been added
+ return
+ if self.params.planebgcolor and not self.params.planebgimage:
+ cmd += ["bgcolor={}".format(self.params.planebgcolor)]
+ else:
+ cmd += ["bgcolor=none"]
+ cmd += ["skycolor={}".format(self.params.skycolor or 'none')]
+ if self.params.transition: cmd += ["vp={}".format(self.params.transition)]
+ cmd += [ self.filepath, self.filepath ]
+ self._call_cmd(cmd)
+
+
+ def _trim_cmd (self):
+ cmd = [BIN_CONVERT, self.filepath, "-trim", "+repage", self.filepath]
+ self._call_cmd(cmd)
+
+ def _prepare_gridimage(self, image):
+ if image['mimetype'] == 'gif':
+ _frame = self._choose_gif_frame(image['path'])
+ if image['mimetype'] != 'png':
+ cmd = [BIN_CONVERT, image['path'], self.filepath]
+ else:
+ cmd = ['cp', image['path'], self.filepath]
+ self._call_cmd(cmd)
+
+
+ def _overlay_planebgimage(self):
+ cmd = [
+ BIN_COMPOSITE,
+ "-compose", "Dst_Over", "-gravity", "center",
+ self.params.planebgimage["path"],
+ self.filepath,
+ self.filepath
+ ]
+ self._call_cmd(cmd)
+
+ def create(self):
+ if self.params.bgimage:
+ self._prepare_gridimage(self.params.bgimage)
+ self._grid_command()
+ elif self.params.imageinstead:
+ self._prepare_gridimage(self.params.imageinstead)
+ else:
+ self._make_canvas()
+ self._grid_command()
+ if self.params.shadow: self._shadow_cmd()
+ self._threed_rotate_cmd()
+ if self.params.planebgimage: self._overlay_planebgimage()
+ if self.params.trim: self._trim_cmd()
+ self._cleanup()
diff --git a/lib/Pb/Landscape/__init__.py b/lib/Pb/Landscape/__init__.py
new file mode 100755
index 0000000..33eedd6
--- /dev/null
+++ b/lib/Pb/Landscape/__init__.py
@@ -0,0 +1,48 @@
+from Config import *
+import Pb
+import base64
+from Pb import Pb
+import urlparse, re
+
+class PbLandscape(Pb):
+ example_params = {
+ 'imgdata' : open('Pb/Landscape/_base64img', 'rb').read(),
+ 'texture' : 'http://someurl.biz/someimg.jpg',
+ 'heightmap' : 'http://someurl.biz/someimg.jpg',
+ 'name' : 'donkey'
+ }
+ def __init__(self, **kwargs):
+ super(PbLandscape,self).__init__();
+ _definitions = {
+ 'heightmap': {'type': 'string'} ,
+ 'imgdata': {'type': 'raw' } ,
+ 'texture': {'type': 'string' } ,
+ 'username': {'type': 'string'} ,
+ }
+ self.params.definitions_import(_definitions, kwargs, classname=self.__class__.__name__);
+ _namepart = re.sub(r'https?:?/?/?', '', str(self.params.texture))
+ self.filename, self.filepath = self._filename_filepath_create(url=_namepart, extension="png")
+
+ def _saveImgData(self):
+ try:
+ up = urlparse.urlparse(str(self.params.imgdata))
+ head, data = up.path.split(',', 1)
+ bits = head.split(';')
+ mime_type = bits[0] if bits[0] else 'text/plain'
+ charset, b64 = 'ASCII', False
+ for bit in bits[1]:
+ if bit.startswith('charset='):
+ charset = bit[8:]
+ elif bit == 'base64':
+ b64 = True
+
+ # Do something smart with charset and b64 instead of assuming
+ plaindata = base64.b64decode(data)
+
+ with open(self.filepath, 'wb') as f:
+ f.write(plaindata)
+ except Exception as e:
+ self.err_warn(str(e));
+
+ def create(self, breakmode=""):
+ self._saveImgData();
diff --git a/lib/Pb/Landscape/_base64img b/lib/Pb/Landscape/_base64img
new file mode 100644
index 0000000..bb7e093
--- /dev/null
+++ b/lib/Pb/Landscape/_base64img
@@ -0,0 +1 @@
+ \ No newline at end of file
diff --git a/lib/Pb/Landscape/landscape b/lib/Pb/Landscape/landscape
new file mode 100755
index 0000000..10e8ede
--- /dev/null
+++ b/lib/Pb/Landscape/landscape
@@ -0,0 +1,163 @@
+#!/usr/bin/python2.7
+import cgi
+import sys
+import os
+import re
+import time
+import string
+import urllib
+from subprocess import Popen, PIPE
+import sha
+import simplejson as json
+
+import mimetypes
+import s3
+
+import db
+DB = db.db ()
+
+import base64
+import urlparse
+
+
+AWS_ACCESS_KEY_ID = 'AKIAIR53VPBXKJMXZIBA'
+AWS_SECRET_ACCESS_KEY = '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'
+BUCKET_NAME = 'i.asdf.us'
+BASE_PATH = "/var/www/asdf.us/httpdocs/imlandscape"
+BASE_URL = "http://i.asdf.us/"
+PARAM_LIST = "heightmap texture name imgdata filename"
+BIN_IDENTIFY = "/usr/bin/identify"
+
+print "Content-type: text/plain"
+print ""
+def insert_cmd (dir, newfile, name, texture, dataobj):
+ if texture == "":
+ texture = "NULL"
+ try:
+ sql = "INSERT INTO im_cmd (date,remote_addr,name,url,dir,oldfile,newfile,cmd, dataobj, tag) VALUES(%s,%s,%s,%s,%s,%s,%s,%s,%s, %s)"
+
+ args = (now(), "NULL", name, texture, dir, "NULL", newfile, "NULL", dataobj, "imlandscape")
+ DB.execute(sql, args)
+ except ():
+ return
+
+def hash_dir (s):
+ return sha.new(s).hexdigest()[:2]
+
+def bin_identify (filename):
+ ident = Popen([BIN_IDENTIFY, filename], stdout=PIPE).communicate()[0]
+ partz = ident.split(" ")
+ width,height = partz[2].split("x")
+ return width, height
+
+def get_params (paramlist):
+ paramkeys = paramlist.split()
+ form = cgi.FieldStorage()
+ params = {}
+ for key in paramkeys:
+ if key in form:
+ if key == 'heightmap':
+ params[key] = form[key].value
+ elif key == 'imgdata':
+ params[key] = form[key].value
+ elif key == 'texture':
+ params[key] = form[key].value
+ else:
+ params[key] = sanitize(form[key].value)
+ else:
+ params[key] = None
+ return params
+
+def error (e):
+ print "#@imlandscape"
+ print "ERROR\t"+e
+ sys.exit()
+
+def now ():
+ return int(time.mktime(time.localtime()))
+
+def sanitize (str):
+ return re.sub(r'\W+', '', str)
+
+def filename_from_url (url, name=""):
+ if "?" in url:
+ url = url.split("?")[0]
+ if "/" in url:
+ url = urllib.unquote(url).replace(" ","")
+ filename = url.split("/")[-1]
+ filetype = "png"
+ filename = sanitize(filename[:-4])
+ else:
+ filename = ""
+ if name != "":
+ name = name+"_"
+ return "{}_{}{}_{}.{}".format("imlandscape", name, filename,now(), "png")
+
+def saveImgData(url, filename):
+ try:
+ up = urlparse.urlparse(url)
+ head, data = up.path.split(',', 1)
+ bits = head.split(';')
+ mime_type = bits[0] if bits[0] else 'text/plain'
+ charset, b64 = 'ASCII', False
+ for bit in bits[1]:
+ if bit.startswith('charset='):
+ charset = bit[8:]
+ elif bit == 'base64':
+ b64 = True
+
+ # Do something smart with charset and b64 instead of assuming
+ plaindata = base64.b64decode(data)
+
+ with open(filename, 'wb') as f:
+ f.write(plaindata)
+ except Exception as e:
+ error(str(e));
+
+def file_size (file):
+ return os.stat(file)[6]
+
+def moveToS3(filename,objectname):
+ conn = s3.AWSAuthConnection(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY)
+ sys.stderr.write( "Uploading %s" % filename)
+ filedata = open(filename, 'rb').read()
+ content_type = mimetypes.guess_type(filename)[0]
+ if not content_type:
+ content_type = 'text/plain'
+ conn.put(BUCKET_NAME, objectname, s3.S3Object(filedata),
+ {'x-amz-acl': 'public-read', 'Content-Type': content_type, 'x-amz-storage-class': 'REDUCED_REDUNDANCY'})
+
+param = get_params(PARAM_LIST)
+if param['imgdata'] is None:
+ error("no imgdata")
+url = param['imgdata']
+if param['texture'] is None:
+ param['texture'] = "";
+if param['heightmap'] is None:
+ param['heightmap'] = "";
+if param['name'] is None:
+ param['name'] = "";
+
+dataobj = json.dumps({
+ 'texture' : param['texture'],
+ 'heightmap' : param['heightmap'],
+ 'name' : param['name']
+})
+
+dir = hash_dir(param['imgdata']);
+
+filename = filename_from_url(param['texture'], param['name']);
+
+tag = "imlandscape"
+objectname = "im/"+dir+"/"+filename
+
+saveImgData(param['imgdata'], filename);
+
+print "#@imlandscape"
+#print ", ".join([k+"="+str(v) for k,v in param.iteritems()])
+print file_size (filename)
+print bin_identify (filename)
+print BASE_URL+objectname
+insert_cmd(dir, filename, param['name'], param['texture'], dataobj);
+moveToS3(filename, objectname);
+os.remove(filename);
diff --git a/lib/Pb/Pattern/__init__.py b/lib/Pb/Pattern/__init__.py
new file mode 100755
index 0000000..4e4c5a8
--- /dev/null
+++ b/lib/Pb/Pattern/__init__.py
@@ -0,0 +1,84 @@
+import os
+import sys
+import random
+import re
+import urllib
+from Config import *
+from Pb import Pb
+
+import simplejson as json
+from PIL import Image
+import uuid
+
+_fuse_mode="Pin_Light"
+
+class PbPattern(Pb):
+ example_params = {
+ # "pattern_url" : "http://asdf.us/impattern/patterns/1.png",
+ "pattern_data" : '{"matrix":[["0","0","0","0","0","1","0","0","0","0"],["0","0","0","0","1","1","1","0","0","0"],["0","0","1","1","1","0","1","0","0","0"],["0","1","1","0","0","0","0","0","0","0"],["0","1","0","0","1","0","0","0","0","0"],["0","1","0","0","1","0","0","0","1","0"],["0","1","0","0","1","1","0","0","1","0"],["0","1","0","0","0","1","1","1","1","0"],["0","1","1","1","1","0","0","0","0","0"],["0","0","0","0","1","0","0","0","0","0"]],"width":"10","height":"10"}',
+ # "username" : "garfield",
+ "image_url" : "http://i.asdf.us/im/be/PinkHijab_1425078647_reye.gif",
+ }
+ def __init__(self, **kwargs):
+ super(PbPattern,self).__init__();
+ _definitions = {
+ 'image_url': { 'type':'img_url' },
+ 'pattern_url': { 'type':'img_url' },
+ 'pattern_data': { 'type':'raw' },
+ 'username': { 'type':'string' },
+ }
+ self.params.definitions_import(_definitions, kwargs, classname=self.__class__.__name__);
+ self.filename, self.filepath = self._filename_filepath_create(url=self.params.image_url['url'], extension=self.params.image_url['mimetype'])
+ _pattern_filename, self._pattern_filepath = self._filename_filepath_create(namepart="pattern")
+
+ if self.params.pattern_data: self._from_pattern_data()
+ elif not self.params.pattern_url:
+ self.err_warn("pattern must be supplied as json array or as a png url")
+
+ def _from_pattern_data(self):
+ def boolToColor(boolean):
+ if boolean:
+ return (0,0,0,255);
+ else:
+ return (255,255,255,255)
+ specs = json.loads(str(self.params.pattern_data));
+ if int(specs['width']) > 100 or int(specs['height']) > 100:
+ raise ValueError
+ sys.stderr.write("height and width need to be less than 100 px")
+ img = Image.new('RGBA', (int(specs['width']), int(specs['height'])));
+ pixels = img.load();
+ for i in range(0, len(specs['matrix'])):
+ for j in range(0, len(specs['matrix'][i])):
+ pixels[j,i] = boolToColor(int(specs['matrix'][i][j]));
+
+ img.save(self._pattern_filepath, "PNG")
+
+ #first step
+ def _make_canvas(self):
+ _width, _height = self.dimensions(self.params.image_url['path']) # same here
+ cmd = [BIN_CONVERT, "-size", _width + "x" + _height, "canvas:transparent", self.filepath]
+ self._call_cmd(cmd)
+
+ #second step use the Canvas as a background
+ def _make_mask(self):
+ #tile the pattern pattern on the canvas
+ cmd = [BIN_COMPOSITE,"-tile", self._pattern_filepath, self.filepath, self.filepath];
+ self._call_cmd(cmd)
+ #fuse the tiled file to create a mask
+ #convert thebg.gif -compose Dst_In null: thefile.gif -matte -layers composite new.gif
+ cmd = [BIN_CONVERT, self.filepath, "-compose", "Dst_In", "null:",
+ self.params.image_url['path'], "-matte", "-layers", "composite", self.filepath]
+ self._call_cmd(cmd)
+
+ #third step
+ def _fuse_mask(self, fuse_mode=_fuse_mode):
+ cmd = [BIN_CONVERT, "-dispose", "2", self.filepath, "null:",
+ self.params.image_url['path'], "-matte", "-compose", fuse_mode, "-layers", "composite",
+ self.filepath]
+ self._call_cmd(cmd)
+
+ def create(self):
+ self._make_canvas();
+ self._make_mask()
+ self._fuse_mask();
+
diff --git a/lib/Pb/__init__.py b/lib/Pb/__init__.py
new file mode 100644
index 0000000..4d8a8d4
--- /dev/null
+++ b/lib/Pb/__init__.py
@@ -0,0 +1,130 @@
+import re
+from Config import *
+import time
+import urllib
+import urllib2
+import sys
+import os
+import random
+from subprocess import Popen,PIPE,call
+from Params import Params
+import time
+Request = urllib2.Request
+urlencode = urllib.urlencode
+urlopen = urllib2.urlopen
+
+_max_filename_length = 20;
+
+class Pb(object):
+ def __init__(self):
+ self._now = str(int(time.time()));
+ self.params = Params(classname=self.__class__.__name__, now=self._now);
+ self._files_created = []
+ self.commands = [];
+ self._working_dir = WORKING_DIR
+
+ def _filename_create(self, url=None, namepart="", extension=""):
+ if url:
+ _basename = os.path.basename(url)
+ namepart = re.split(r'\.', _basename)[0]
+ namepart = self._url_sanitize(namepart)[0:_max_filename_length]
+ name = ""
+ if namepart: name += "%s-" % namepart
+ name += "%s_%s" % (self.__class__.__name__, self._now)
+ if self.params.username : name += "_%s" % self.params.username
+ if extension: name += ".%s" % extension
+ return name
+
+ def _filepath_create(self, filename, directory=WORKING_DIR):
+ return os.path.join(directory, filename)
+
+ def _filename_filepath_create(self, url=None, namepart="", directory=WORKING_DIR, extension=""):
+ _filename = self._filename_create(url=url, namepart=namepart, extension=extension);
+ _filepath = self._filepath_create(_filename, directory=directory);
+ return _filename, _filepath
+
+ def _tempfilepath_create(self, namepart="temp", directory=WORKING_DIR, extension=""):
+ _filename = self._filename_create(namepart=namepart, extension=extension)
+ return self._filepath_create(_filename, directory=directory)
+
+ def _url_sanitize (self, s):
+ return re.sub(r'\W+', '', s)
+
+ def _call_cmd(self, cmd):
+ try:
+ cmd = map(lambda i: str(i), cmd)
+ call(cmd)
+ self.commands.append(" ".join(cmd));
+ except Exception:
+ raise Exception("Unable to call cmd {}".format(str(cmd)))
+
+
+ @staticmethod
+ def dimensions (filepath):
+ #works in lieu of a mimetype check (it reads the header as well)
+ ident = (Popen([BIN_IDENTIFY, filepath], stdout=PIPE).communicate()[0]).split(" ")
+ return ident[2].split("x")
+
+ def _width_and_height_set(self, filepath=None, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT):
+ if filepath:
+ self.width, self.height = Pb.dimensions(filepath)
+ return
+ self.width = width
+ self.height = height
+
+ @staticmethod
+ def file_size (filepath):
+ try:
+ return os.stat(filepath)[6]
+ except Exception as e:
+ sys.stderr.write("Couldn't determine filesize\n")
+ sys.stderr.write(str(e)+"\n")
+ raise;
+
+ def _file_read(self, filepath):
+ f = open(filepath, 'r');
+ data = f.read()
+ f.close()
+ return data
+
+ def err_warn(self, s):
+ sys.stderr.write("ERROR:{} - {}\n".format(self.__class__.__name__, s))
+
+ def _cleanup(self):
+ if not self._files_created: return
+ cmd = ["rm"]+self._files_created
+ self._call_cmd(cmd)
+
+ def err_fatal(self, s):
+ sys.stderr.write("ERROR[FATAL]:{} - {}\n".format(self.__class__.__name__, s))
+ sys.exit(1);
+
+ @classmethod
+ def example_run(cls, params=None, verbose=True):
+ example_params = params or cls.example_params
+ if not example_params:
+ raise AttributeError ("Must supply test params to test %s" % cls.__name__)
+ b = cls(**example_params)
+ b.create();
+ if verbose:
+ sys.stderr.write("generated %s\n" % b.filepath)
+ sys.stderr.write("files created %s\n" % b._files_created)
+ sys.stderr.write("commands %s" % " ".join(b.commands))
+
+ @staticmethod
+ def gif_frames(filepath):
+ try:
+ info = Popen([BIN_IDENTIFY,filepath], stdout=PIPE).communicate()[0]
+ frames = filter((lambda x: x), map(
+ (lambda x: x.split(" ")[0]),
+ (info).split('\n')
+ ))
+ return frames
+ except Exception as e:
+ self.err_warn("couldn't get gif frames")
+ raise e;
+
+ def _choose_gif_frame(self, filepath):
+ _gif_frames = Pb.gif_frames(filepath)
+ frame = random.choice(_gif_frames)
+ self._call_cmd([BIN_CONVERT, frame, filepath])
diff --git a/lib/Pb/inspect_objects_example.py b/lib/Pb/inspect_objects_example.py
new file mode 100644
index 0000000..92e28b7
--- /dev/null
+++ b/lib/Pb/inspect_objects_example.py
@@ -0,0 +1,15 @@
+class Test(object):
+ def __init__(self, one="la", two="di"):
+ self._test_args(inspect.getargvalues(inspect.currentframe()));
+
+ def _test_args(self, _args_vals):
+ for arg in _args_vals.args:
+ if arg == "self":
+ continue
+ try:
+ sys.stdout.write("%s\n" % arg)
+ sys.stdout.write("\t%s\n" % _args_vals.locals.get(arg))
+ except Exception as e:
+ sys.stderr.write("%s\n" % e );
+
+t = Test();