diff options
Diffstat (limited to 'bin/3Drotate')
| -rwxr-xr-x | bin/3Drotate | 873 |
1 files changed, 873 insertions, 0 deletions
diff --git a/bin/3Drotate b/bin/3Drotate new file mode 100755 index 0000000..227b92d --- /dev/null +++ b/bin/3Drotate @@ -0,0 +1,873 @@ +#!/bin/bash +# +# Developed by Fred Weinhaus 8/18/2007 .......... revised 11/26/2011 +# +# USAGE: 3Drotate option=value infile outfile +# USAGE: 3Drotate [-h or -help] +# +# OPTIONS: any one or more +# +# pan value rotation about image vertical centerline; +# -180 to +180 (deg); default=0 +# tilt value rotation about image horizontal centerline; +# -180 to +180 (deg); default=0 +# roll value rotation about the image center; +# -180 to +180 (deg); default=0 +# pef value perspective exaggeration factor; +# 0 to 3.19; default=1 +# idx value +/- pixel displacement in rotation point right/left +# in input from center; default=0 +# idy value +/- pixel displacement in rotation point down/up +# in input from center; default=0 +# odx value +/- pixel displacement in rotation point right/left +# in output from center; default=0 +# ody value +/- pixel displacement in rotation point down/up +# in output from center; default=0 +# zoom value output zoom factor; where value > 1 means zoom in +# and < -1 means zoom out; value=1 means no change +# bgcolor value the background color value; any valid IM image +# color specification (see -fill); default is black +# skycolor value the sky color value; any valid IM image +# color specification (see -fill); default is black +# auto c center bounding box in output +# (odx and ody ignored) +# auto zc zoom to fill and center bounding box in output +# (odx, ody and zoom ignored) +# auto out creates an output image of size needed to hold +# the transformed image; (odx, ody and zoom ignored) +# vp value virtual-pixel method; any valid IM virtual-pixel method; +# default=background +# +### +# +# NAME: 3DROTATE +# +# PURPOSE: To apply a perspective distortion to an image by providing rotation angles, +# zoom, offsets, background color, perspective exaggeration and auto zoom/centering. +# +# DESCRIPTION: 3DROTATE applies a perspective distortion to an image +# by providing any combination of three optional rotation angle: +# pan, tilt and roll with optional offsets and zoom and with an optional +# control of the perspective exaggeration. The image is treated as if it +# were painted on the Z=0 ground plane. The picture plane is then rotated +# and then perspectively projected to a camera located a distance equal to +# the focal length above the ground plane looking straight down along +# the -Z direction. +# +# +# ARGUMENTS: +# +# PAN is a rotation of the image about its vertical +# centerline -180 to +180 degrees. Positive rotations turn the +# right side of the image away from the viewer and the left side +# towards the viewer. Zero is no rotation. A PAN of +/- 180 deg +# achieves the same results as -flip. +# +# TILT is a rotation of the image about its horizontal +# centerline -180 to +180 degrees. Positive rotations turn the top +# of the image away from the viewer and the bottom towards the +# viewer. Zero is no rotation. A TILT of +/- 180 deg +# achieves the same results as -flop. +# +# ROLL (like image rotation) is a rotation in the plane of the +# the image -180 to +180 degrees. Positive values are clockwise +# and negative values are counter-clockwise. Zero is no rotation. +# A ROLL of any angle achieves the same results as -rotate. +# +# PAN, TILT and ROLL are order dependent. If all three are provided, +# then they will be done in whatever order specified. +# +# PEF is the perspective exaggeration factor. It ranges from 0 to 3.19. +# A normal perspective is achieved with the default of 1. As PEF is +# increased from 1, the perspective effect moves towards that of +# a wide angle lens (more distortion). If PEF is decreased from 1 +# the perspective effect moves towards a telephoto lens (less +# distortion). PEF of 0.5 achieves an effect close to no perspective +# distortion. As pef gets gets larger than some value which depends +# upon the larger the pan, tilt and roll angles become, one reaches +# a point where some parts of the picture become so distorted that +# they wrap around and appear above the "horizon" +# +# IDX is the a pixel displacement of the rotation point in the input image +# from the image center. Positive values shift to the right along the +# sample direction; negative values shift to the left. The default=0 +# corresponds to the image center. +# +# IDY is the a pixel displacement of the rotation point in the input image +# from the image center. Positive values shift to downward along the +# line direction; negative values shift upward. The default=0 +# corresponds to the image center. +# +# ODX is the a pixel displacement from the center of the output image where +# one wants the corresponding input image rotation point to appear. +# Positive values shift to the right along the sample direction; negative +# values shift to the left. The default=0 corresponds to the output image center. +# +# ODY is the a pixel displacement from the center of the output image where +# one wants the corresponding input image rotation point to appear. +# Positive values shift downward along the sample direction; negative +# values shift upward. The default=0 corresponds to the output image center. +# +# ZOOM is the output image zoom factor. Values > 1 (zoomin) cause the image +# to appear closer; whereas values < 1 (zoomout) cause the image to +# appear further away. +# +# BGCOLOR is the color of the background to use to fill where the output image +# is outside the area of the perspective of the input image. See the IM function +# -fill for color specifications. Note that when using rgb(r,g,b), this must be +# enclosed in quotes after the equal sign. +# +# SKYCOLOR is the color to use in the 'sky' area above the perspective 'horizon'. +# See the IM function -fill for color specifications. Note that when using +# rgb(r,g,b), this must be enclosed in quotes after the equal sign. +# +# AUTO can be either c, zc or out. If auto is c, then the resulting perspective +# of the input image will have its bounding box centered in the output image +# whose size will be the same as the input image. If +# auto is zc, then the resulting perspective of the input image will have its +# bounding box zoomed to fill its largest dimension to match the size of the +# the input image and the other dimension will be centered in the output. If +# auto is out, then the output image will be made as large or as small as +# needed to just fill out the transformed input image. If any of these are +# present, then the arguments OSHIFTX, OSHIFTY are ignored. +# +# VP is the virtual-pixel method, which allows the image to be extended outside +# its bounds. For example, vp=background, then the background color is used to +# fill the area in the output image which is outside the perspective view of +# the input image. If vp=tile, then the perspective view will be tiled to fill +# the output image. +# +# NOTE: The output image size will be the same as the input image size due +# to current limitations on -distort Perspective. +# +# CAVEAT: No guarantee that this script will work on all platforms, +# nor that trapping of inconsistent parameters is complete and +# foolproof. Use At Your Own Risk. +# +###### +# + +# set default value +# rotation angles and rotation matrix +pan=0 +tilt=0 +roll=0 +R0=(1 0 0) +R1=(0 1 0) +R2=(0 0 1) + +# scaling output only +sx=1 +sy=1 + +# offset du,dv = output; relative to center of image +du=0 +dv=0 + +# offset di,dj = input; relative to center of image +di=0 +dj=0 + +# perspective exaggeration factor +pef=1 + +# zoom +zoom=1 + +# background color +bgcolor="black" + +# sky color +skycolor="black" + +# virtual-pixel method +vp="background" + +# set directory for temporary files +dir="." # suggestions are dir="." or dir="/tmp" + +# compute pi +pi=`echo "scale=10; 4*a(1)" | bc -l` + + +# set up functions to report Usage and Usage with Description +PROGNAME=`type $0 | awk '{print $3}'` # search for executable on path +PROGDIR=`dirname $PROGNAME` # extract directory of program +PROGNAME=`basename $PROGNAME` # base name of program +usage1() + { + echo >&2 "" + echo >&2 "$PROGNAME:" "$@" + sed >&2 -n '/^###/q; /^#/!q; s/^#//; s/^ //; 4,$p' "$PROGDIR/$PROGNAME" + } +usage2() + { + echo >&2 "" + echo >&2 "$PROGNAME:" "$@" + sed >&2 -n '/^######/q; /^#/!q; s/^#*//; s/^ //; 4,$p' "$PROGDIR/$PROGNAME" + } + +# function to report error messages, usage and exit +errMsg() + { + echo "" + echo $1 + echo "" + usage1 + exit 1 + } + +# function to do dot product of 2 three element vectors +function DP3 + { + V0=($1) + V1=($2) + DP=`echo "scale=10; (${V0[0]} * ${V1[0]}) + (${V0[1]} * ${V1[1]}) + (${V0[2]} * ${V1[2]})" | bc` + } + +# function to do 3x3 matrix multiply M x N where input are rows of each matrix; M1 M2 M3 N1 N2 N3 +function MM3 + { + [ $# -ne 6 ] && errMsg "--- NOT A VALID SET OF MATRIX PARAMETERS ---" + M0=($1) + M1=($2) + M2=($3) + N0=($4) + N1=($5) + N2=($6) + [ ${#M0[*]} -ne 3 -a ${#M1[*]} -ne 3 -a ${#M2[*]} -ne 3 -a ${#N0[*]} -ne 3 -a ${#N1[*]} -ne 3 -a ${#N2[*]} -ne 3 ] && errMsg "--- NOT A VALID SET OF MATRIX ROWS ---" + # extract columns n from rows N + n0=(${N0[0]} ${N1[0]} ${N2[0]}) + n1=(${N0[1]} ${N1[1]} ${N2[1]}) + n2=(${N0[2]} ${N1[2]} ${N2[2]}) + DP3 "${M0[*]}" "${n0[*]}" + P00=$DP + DP3 "${M0[*]}" "${n1[*]}" + P01=$DP + DP3 "${M0[*]}" "${n2[*]}" + P02=$DP + DP3 "${M1[*]}" "${n0[*]}" + P10=$DP + DP3 "${M1[*]}" "${n1[*]}" + P11=$DP + DP3 "${M1[*]}" "${n2[*]}" + P12=$DP + DP3 "${M2[*]}" "${n0[*]}" + P20=$DP + DP3 "${M2[*]}" "${n1[*]}" + P21=$DP + DP3 "${M2[*]}" "${n2[*]}" + P22=$DP + P0=($P00 $P01 $P02) + P1=($P10 $P11 $P12) + P2=($P20 $P21 $P22) + } + +# function to project points from input to output domain +function forwardProject + { + ii=$1 + jj=$2 + numu=`echo "scale=10; ($P00 * $ii) + ($P01 * $jj) + $P02" | bc` + numv=`echo "scale=10; ($P10 * $ii) + ($P11 * $jj) + $P12" | bc` + den=`echo "scale=10; ($P20 * $ii) + ($P21 * $jj) + $P22" | bc` + uu=`echo "scale=0; $numu / $den" | bc` + vv=`echo "scale=0; $numv / $den" | bc` + } + +# function to project points from input to output domain +function inverseProject + { + uu=$1 + vv=$2 + numi=`echo "scale=10; ($Q00 * $uu) + ($Q01 * $vv) + $Q02" | bc` + numj=`echo "scale=10; ($Q10 * $uu) + ($Q11 * $vv) + $Q12" | bc` + den=`echo "scale=10; ($Q20 * $uu) + ($Q21 * $vv) + $Q22" | bc` + ii=`echo "scale=0; $numi / $den" | bc` + jj=`echo "scale=0; $numj / $den" | bc` + } + +# function to invert a 3 x 3 matrix using method of adjoint +# inverse is the transpose of the matrix of cofactors divided by the determinant +function M3inverse + { + m00=$1 + m01=$2 + m02=$3 + m10=$4 + m11=$5 + m12=$6 + m20=$7 + m21=$8 + m22=$9 + c00=`echo "scale=10; ($m11 * $m22) - ($m21 * $m12)" | bc` + c01=`echo "scale=10; ($m20 * $m12) - ($m10 * $m22)" | bc` + c02=`echo "scale=10; ($m10 * $m21) - ($m20 * $m11)" | bc` + c10=`echo "scale=10; ($m21 * $m02) - ($m01 * $m22)" | bc` + c11=`echo "scale=10; ($m00 * $m22) - ($m20 * $m02)" | bc` + c12=`echo "scale=10; ($m20 * $m01) - ($m00 * $m21)" | bc` + c20=`echo "scale=10; ($m01 * $m12) - ($m11 * $m02)" | bc` + c21=`echo "scale=10; ($m10 * $m02) - ($m00 * $m12)" | bc` + c22=`echo "scale=10; ($m00 * $m11) - ($m10 * $m01)" | bc` + det=`echo "scale=10; ($m00 * $c00) + ($m01 * $c01) + ($m02 * $c02)" | bc` + idet=`echo "scale=10; 1 / $det" | bc` + Q00=`echo "scale=10; $c00 * $idet" | bc` + Q01=`echo "scale=10; $c10 * $idet" | bc` + Q02=`echo "scale=10; $c20 * $idet" | bc` + Q10=`echo "scale=10; $c01 * $idet" | bc` + Q11=`echo "scale=10; $c11 * $idet" | bc` + Q12=`echo "scale=10; $c21 * $idet" | bc` + Q20=`echo "scale=10; $c02 * $idet" | bc` + Q21=`echo "scale=10; $c12 * $idet" | bc` + Q22=`echo "scale=10; $c22 * $idet" | bc` + Q0=($Q00 $Q01 $Q02) + Q1=($Q10 $Q11 $Q12) + Q2=($Q20 $Q21 $Q22) + } + +# function to test if entry is floating point number +function testFloat + { + test1=`expr "$1" : '^[0-9][0-9]*$'` # counts same as above but preceeded by plus or minus + test2=`expr "$1" : '^[+-][0-9][0-9]*$'` # counts one or more digits + test3=`expr "$1" : '^[0-9]*[\.][0-9]*$'` # counts 0 or more digits followed by period followed by 0 or more digits + test4=`expr "$1" : '^[+-][0-9]*[\.][0-9]*$'` # counts same as above but preceeded by plus or minus + floatresult=`expr $test1 + $test2 + $test3 + $test4` +# [ $floatresult = 0 ] && errMsg "THE ENTRY $1 IS NOT A FLOATING POINT NUMBER" + } + +# get input image size +function imagesize + { + width=`identify -format %w $tmpA` + height=`identify -format %h $tmpA` + } + +# test for correct number of arguments and get values +if [ $# -eq 0 ] + then + # help information + echo "" + usage2 + exit 0 +elif [ $# -gt 15 ] + then + errMsg "--- TOO MANY ARGUMENTS WERE PROVIDED ---" +else + while [ $# -gt 0 ] + do + # get parameter values + case "$1" in + -h|-help) # help information + echo "" + usage2 + exit 0 + ;; + -) # STDIN and end of arguments + break + ;; + -*) # any other - argument + errMsg "--- UNKNOWN OPTION ---" + ;; + pan[=]*) # pan angle + arg="$1=" + pan=`echo "$arg" | cut -d= -f2` + # function bc does not seem to like numbers starting with + sign, so strip off + pan=`echo "$pan" | sed 's/^[+]\(.*\)$/\1/'` + # pantest>0 if floating point number; otherwise pantest=0 + testFloat "$pan"; pantest=$floatresult + pantestA=`echo "$pan < - 180" | bc` + pantestB=`echo "$pan > 180" | bc` + [ $pantest -eq 0 ] && errMsg "PAN=$pan IS NOT A NUMBER" + [ $pantestA -eq 1 -o $pantestB -eq 1 ] && errMsg "PAN=$pan MUST BE GREATER THAN -180 AND LESS THAN +180" + panang=`echo "scale=10; $pi * $pan / 180" | bc` + sinpan=`echo "scale=10; s($panang)" | bc -l` + sinpanm=`echo "scale=10; - $sinpan" | bc` + cospan=`echo "scale=10; c($panang)" | bc -l` + Rp0=($cospan 0 $sinpan) + Rp1=(0 1 0) + Rp2=($sinpanm 0 $cospan) + # do matrix multiply to get new rotation matrix + MM3 "${Rp0[*]}" "${Rp1[*]}" "${Rp2[*]}" "${R0[*]}" "${R1[*]}" "${R2[*]}" + R0=(${P0[*]}) + R1=(${P1[*]}) + R2=(${P2[*]}) + ;; + tilt[=]*) # tilt angle + arg="$1=" + tilt=`echo "$arg" | cut -d= -f2` + # function bc does not seem to like numbers starting with + sign, so strip off + tilt=`echo "$tilt" | sed 's/^[+]\(.*\)$/\1/'` + # tilttest>0 if floating point number; otherwise tilttest=0 + testFloat "$tilt"; tilttest=$floatresult + tilttestA=`echo "$tilt < - 180" | bc` + tilttestB=`echo "$tilt > 180" | bc` + [ $tilttest -eq 0 ] && errMsg "tilt=$tilt IS NOT A NUMBER" + [ $tilttestA -eq 1 -o $tilttestB -eq 1 ] && errMsg "TILT=$tilt MUST BE GREATER THAN -180 AND LESS THAN +180" + tiltang=`echo "scale=10; $pi * $tilt / 180" | bc` + sintilt=`echo "scale=10; s($tiltang)" | bc -l` + sintiltm=`echo "scale=10; - $sintilt" | bc` + costilt=`echo "scale=10; c($tiltang)" | bc -l` + Rt0=(1 0 0) + Rt1=(0 $costilt $sintilt) + Rt2=(0 $sintiltm $costilt) + # do matrix multiply to get new rotation matrix + MM3 "${Rt0[*]}" "${Rt1[*]}" "${Rt2[*]}" "${R0[*]}" "${R1[*]}" "${R2[*]}" + R0=(${P0[*]}) + R1=(${P1[*]}) + R2=(${P2[*]}) + ;; + roll[=]*) # roll angle + arg="$1=" + roll=`echo "$arg" | cut -d= -f2` + # function bc does not seem to like numbers starting with + sign, so strip off + roll=`echo "$roll" | sed 's/^[+]\(.*\)$/\1/'` + # rolltest>0 if floating point number; otherwise rolltest=0 + testFloat "$roll"; rolltest=$floatresult + rolltestA=`echo "$roll < - 180" | bc` + rolltestB=`echo "$roll > 180" | bc` + [ $rolltest -eq 0 ] && errMsg "roll=$roll IS NOT A NUMBER" + [ $rolltestA -eq 1 -o $rolltestB -eq 1 ] && errMsg "ROLL=$roll MUST BE GREATER THAN -180 AND LESS THAN +180" + rollang=`echo "scale=10; $pi * $roll / 180" | bc` + sinroll=`echo "scale=10; s($rollang)" | bc -l` + sinrollm=`echo "scale=10; - $sinroll" | bc` + cosroll=`echo "scale=10; c($rollang)" | bc -l` + Rr0=($cosroll $sinroll 0) + Rr1=($sinrollm $cosroll 0) + Rr2=(0 0 1) + # do matrix multiply to get new rotation matrix + MM3 "${Rr0[*]}" "${Rr1[*]}" "${Rr2[*]}" "${R0[*]}" "${R1[*]}" "${R2[*]}" + R0=(${P0[*]}) + R1=(${P1[*]}) + R2=(${P2[*]}) + ;; + pef[=]*) # pef + arg="$1=" + pef=`echo "$arg" | cut -d= -f2` + # function bc does not seem to like numbers starting with + sign, so strip off + pef=`echo "$pef" | sed 's/^[+]\(.*\)$/\1/'` + # peftest>0 if floating point number; otherwise peftest=0 + testFloat "$pef"; peftest=$floatresult + peftestA=`echo "$pef < 0" | bc` + peftestB=`echo "$pef > 3.19" | bc` + [ $peftest -eq 0 ] && errMsg "PEF=$pef IS NOT A NUMBER" + ;; + idx[=]*) # input x shift + arg="$1=" + di=`echo "$arg" | cut -d= -f2` + # function bc does not seem to like numbers starting with + sign, so strip off + di=`echo "$di" | sed 's/^[+]\(.*\)$/\1/'` + # ditest>0 if floating point number; otherwise ditest=0 + testFloat "$di"; ditest=$floatresult + [ $ditest -eq 0 ] && errMsg "ISHIFTX=$di IS NOT A NUMBER" + ;; + idy[=]*) # input y shift + arg="$1=" + dj=`echo "$arg" | cut -d= -f2` + # function bc does not seem to like numbers starting with + sign, so strip off + dj=`echo "$dj" | sed 's/^[+]\(.*\)$/\1/'` + # djtest>0 if floating point number; otherwise ditest=0 + testFloat "$dj"; djtest=$floatresult + [ $djtest -eq 0 ] && errMsg "ISHIFTY=$dj IS NOT A NUMBER" + ;; + odx[=]*) # output x shift + arg="$1=" + du=`echo "$arg" | cut -d= -f2` + # function bc does not seem to like numbers starting with + sign, so strip off + du=`echo "$du" | sed 's/^[+]\(.*\)$/\1/'` + # dutest>0 if floating point number; otherwise ditest=0 + testFloat "$du"; dutest=$floatresult + [ $dutest -eq 0 ] && errMsg "OSHIFTX=$du IS NOT A NUMBER" + ;; + ody[=]*) # output y shift + arg="$1=" + dv=`echo "$arg" | cut -d= -f2` + # function bc does not seem to like numbers starting with + sign, so strip off + dv=`echo "$dv" | sed 's/^[+]\(.*\)$/\1/'` + # dvtest>0 if floating point number; otherwise ditest=0 + testFloat "$dv"; dvtest=$floatresult + [ $dvtest -eq 0 ] && errMsg "OSHIFTY=$dv IS NOT A NUMBER" + ;; + zoom[=]*) # output zoom + arg="$1=" + zoom=`echo "$arg" | cut -d= -f2` + # function bc does not seem to like numbers starting with + sign, so strip off + zoom=`echo "$zoom" | sed 's/^[+]\(.*\)$/\1/'` + # zoomtest>0 if floating point number; otherwise peftest=0 + testFloat "$zoom"; zoomtest=$floatresult + zoomtest=`echo "$zoom < 1 && $zoom > -1" | bc` + [ $zoomtest -eq 1 ] && errMsg "ZOOM=$zoom MUST BE GREATER THAN 1 OR LESS THAN -1" + ;; + bgcolor[=]*) # output background color + arg="$1=" + bgcolor=`echo "$arg" | cut -d= -f2` + ;; + skycolor[=]*) # output sky color + arg="$1=" + skycolor=`echo "$arg" | cut -d= -f2` + ;; + vp[=]*) # virtual pixel method + arg="$1=" + vp=`echo "$arg" | cut -d= -f2` + [ "$vp" != "background" -a "$vp" != "dither" -a "$vp" != "edge" -a "$vp" != "mirror" -a "$vp" != "random" -a "$vp" != "tile" -a "$vp" != "transparent" ] && errMsg "VP=$vp IS NOT A VALID VALUE" + ;; + auto[=]*) # output background color + arg="$1=" + auto=`echo "$arg" | cut -d= -f2` + [ "$auto" != "c" -a "$auto" != "zc" -a "$auto" != "out" ] && errMsg "AUTO=$auto IS NOT A VALID VALUE" + ;; + *[=]*) # not valid + errMsg "$1 IS NOT A VALID ARGUMENT" + ;; + *) # end of arguments + break + ;; + esac + shift # next option + done + # + # get infile and outfile + infile=$1 + outfile=$2 +fi + +# setup temporary images and auto delete upon exit +# use mpc/cache to hold input image temporarily in memory +tmpA="$dir/3Drotate_$$.mpc" +tmpB="$dir/3Drotate_$$.cache" +trap "rm -f $tmpA $tmpB; exit 0" 0 +trap "rm -f $tmpA $tmpB; exit 1" 1 2 3 15 + +# test that infile provided +[ "$infile" = "" ] && errMsg "NO INPUT FILE SPECIFIED" +# test that outfile provided +[ "$outfile" = "" ] && errMsg "NO OUTPUT FILE SPECIFIED" + +if convert -quiet -regard-warnings "$infile" +repage "$tmpA" + then + [ "$pef" = "" ] && pef=1 +else + errMsg "--- FILE $infile DOES NOT EXIST OR IS NOT AN ORDINARY FILE, NOT READABLE OR HAS ZERO SIZE ---" +fi + +# get input image width and height +imagesize +maxwidth=`expr $width - 1` +maxheight=`expr $height - 1` + +# deal with auto adjustments to values +if [ "$auto" = "zc" ] + then + du=0 + dv=0 + zoom=1 +elif [ "$auto" = "c" ] + then + du=0 + dv=0 +fi + +# convert offsets of rotation point to relative to pixel 0,0 +di=`echo "scale=10; ($di + (($width - 1) / 2)) / 1" | bc` +dj=`echo "scale=10; ($dj + (($height - 1) / 2)) / 1" | bc` +du=`echo "scale=10; $du / 1" | bc` +dv=`echo "scale=10; $dv / 1" | bc` + +# convert zoom to scale factors +if [ `echo "$zoom >= 1" | bc` -eq 1 ] + then + sx=`echo "scale=10; 1 / $zoom" | bc` + sy=$sx +elif [ `echo "$zoom <= -1" | bc` -eq 1 ] + then + sx=`echo "scale=10; - $zoom / 1" | bc` + sy=$sx +fi + +# Consider the picture placed on the Z=0 plane and the camera a distance +# Zc=f above the picture plane looking straight down at the image center. +# Now the perspective equations (in 3-D) are defined as (x,y,f) = M (X',Y',Z'), +# where the camera orientation matrix M is the identity matrix but with M22=-1 +# because the camera is looking straight down along -Z. +# Thus a reflection transformation relative to the ground plane coordinates. +# Let the camera position Zc=f=(sqrt(ins*ins + inl*inl)) / ( 2 tan(fov/2) ) +# Now we want to rotate the ground points corresponding to the picture corners. +# The basic rotation is (X',Y',Z') = R (X,Y,0), where R is the rotation matrix +# involving pan, tilt and roll. +# But we need to convert (X,Y,0) to (X,Y,1) and also to offset for Zc=f +# First we note that (X,Y,0) = (X,Y,1) - (0,0,1) +# Thus the equation becomes (x,y,f) = M {R [(X,Y,1) - (0,0,1)] - (0,0,Zc)} = MT (X,Y,1) +# But R [(X,Y,1) - (0,0,1)] = R [II (X,Y,1) - S (X,Y,1)] = R (II-S) (X,Y,1), where +# II is the identity matrix and S is an all zero matrix except for S22=1. +# Thus (II-S) is the identity matrix with I22=0 and +# RR = R (II-S) is just R with the third column all zeros. +# Thus we get (x,y,f) = M {RR (X,Y,1) - (0,0,Zc)}. +# But M {RR (X,Y,1) - (0,0,Zc)} = M {RR(X,Y,1) - D (X,Y,1)}, where +# D is an all zero matrix with D22 = Zc = f. +# So that we get M (RR-D) (X,Y,1) = MT (X,Y,1), where +# where T is just R with the third column (0,0,-f), i.e. T02=0, T12=0, T22=-f +# But we need to allow for scaling and offset of the output coordinates and +# conversion from (x,y,f) to (u,v,1)=O and conversion of input coordinates +# from (X,Y,1) to (i,j,1)=I. +# Thus the forward transformation becomes AO=MTBI or O=A'MTBI or O=PI, +# where prime means inverse. +# However, to do the scaling of the output correctly, need to offset by the input +# plus output offsets, then scale, which is all put into A'. +# Thus the forward transformation becomes AO=MTBI or O=A'MTBI where A'=Ai +# but we will merge A'M into Aim +# Thus the inverse transform becomes +# I=QO where Q=P' +# A=output scaling, offset and conversion matrix +# B=input offset and conversion matrix (scaling only needs to be done in one place) +# M=camera orientation matrix +# R=image rotation matrix Rroll Rtilt Rpan +# T=matrix that is R but R33 offset by f + 1 +# O=output coords vector (i,j,1) +# I=input coords vector (u,v,1)=(is,il,1) +# P=forward perspective transformation matrix +# Q=inverse perspective transformation matrix +# +# For a 35 mm camera whose film format is 36mm wide and 24mm tall, when the focal length +# is equal to the diagonal, the field of view is 53.13 degrees and this is +# considered a normal view equivalent to the human eye. +# See http://www.panoramafactory.com/equiv35/equiv35.html +# Max limit on dfov is 180 degrees (pef=3.19) where get single line like looking at picture on edge. +# Above this limit the picture becomes like the angles get reversed. +# Min limit on dfov seems to be slightly greater than zero degrees. +# Practical limits on dfov depend upon orientation angles. +# For tilt=45, this is about 2.5 dfov (pef=2.5). Above this, some parts of the picture +# that are cut off at the bottom, get wrapped and stretched in the 'sky'. + +dfov=`echo "scale=10; 180 * a(36/24) / $pi" | bc -l` +if [ "$pef" = "" ] + then + pfact=1 +elif [ "$pef" = "0" ] + then + pfact=`echo "scale=10; 0.01 / $dfov" | bc` +else + pfact=$pef +fi +#maxpef=`echo "scale=5; 180 / $dfov" | bc` +#echo "maxpef=$maxpef" + +#compute new field of view based upon pef (pfact) +dfov=`echo "scale=10; $pfact * $dfov" | bc` +dfov2=`echo "scale=10; $dfov / 2" | bc` +arg=`echo "scale=10; $pi * $dfov2 / 180" | bc` +sfov=`echo "scale=10; s($arg)" | bc -l` +cfov=`echo "scale=10; c($arg)" | bc -l` +tfov=`echo "scale=10; $sfov / $cfov" | bc -l` +#echo "tfov=$tfov" + +# calculate focal length in same units as wall (picture) using dfov +diag=`echo "scale=10; sqrt(($width * $width) + ($height * $height))" | bc` +focal=`echo "scale=10; ($diag / (2 * $tfov))" | bc -l` +#echo "focal=$focal" + +# calculate forward transform matrix Q + +# define the input offset and conversion matrix +dim=`echo "scale=10; - $di" | bc` +B0=(1 0 $dim) +B1=(0 -1 $dj) +B2=(0 0 1) + +# define the output scaling, offset and conversion matrix inverse Ai and merge with M +# to become Aim +#A0=($sx 0 $sx*(-$du-$di)) +#A1=(0 -$sy $sy*($dv+$dj)) +#A2=(0 0 -$focal) +#M0=(1 0 0) +#M1=(0 1 0) +#M2=(0 0 -1) +aim00=`echo "scale=10; 1 / $sx" | bc` +aim02=`echo "scale=10; -($sx * ($di + $du)) / ($sx * $focal)" | bc` +aim11=`echo "scale=10; -1 / $sy" | bc` +aim12=`echo "scale=10; -($sy * ($dj + $dv)) / ($sy * $focal)" | bc` +aim22=`echo "scale=10; -1 / $focal" | bc` +Aim0=($aim00 0 $aim02) +Aim1=(0 $aim11 $aim12) +Aim2=(0 0 $aim22) + +# now do successive matrix multiplies from right towards left of main equation P=A'RB + +# convert R to T by setting T02=T12=0 and T22=-f +focalm=`echo "scale=10; - $focal" | bc` +T0=(${R0[0]} ${R0[1]} 0) +T1=(${R1[0]} ${R1[1]} 0) +T2=(${R2[0]} ${R2[1]} $focalm) + +# multiply T x B = P +MM3 "${T0[*]}" "${T1[*]}" "${T2[*]}" "${B0[*]}" "${B1[*]}" "${B2[*]}" + +# multiply Aim x P = P +MM3 "${Aim0[*]}" "${Aim1[*]}" "${Aim2[*]}" "${P0[*]}" "${P1[*]}" "${P2[*]}" + +# the resulting P matrix is now the perspective coefficients for the inverse transformation +P00=${P0[0]} +P01=${P0[1]} +P02=${P0[2]} +P10=${P1[0]} +P11=${P1[1]} +P12=${P1[2]} +P20=${P2[0]} +P21=${P2[1]} +P22=${P2[2]} + +# project input corners to output domain +#echo "UL" +i=0 +j=0 +#echo "i,j=$i,$j" +forwardProject $i $j +#echo "u,v=$uu,$vv" +u1=$uu +v1=$vv +#echo "UR" +i=$maxwidth +j=0 +#echo "i,j=$i,$j" +forwardProject $i $j +#echo "u,v=$uu,$vv" +u2=$uu +v2=$vv +#echo "BR" +i=$maxwidth +j=$maxheight +#echo "i,j=$i,$j" +forwardProject $i $j +#echo "u,v=$uu,$vv" +u3=$uu +v3=$vv +#echo "BL" +i=0 +j=$maxheight +#echo "i,j=$i,$j" +forwardProject $i $j +#echo "u,v=$uu,$vv" +u4=$uu +v4=$vv +#echo "C" +#i=`echo "scale=10; $maxwidth / 2" | bc` +#j=`echo "scale=10; $maxheight / 2" | bc` +#echo "i,j=$i,$j" +#forwardProject $i $j +#echo "u,v=$uu,$vv" +#u5=$uu +#v5=$vv + +# unused +: ' +# Now invert P to get Q for the inverse perspective transformation +# Use the Method of the Adjoint Matrix = transpose of matrix of cofactors divided by the determinant +# M3inverse $P00 $P01 $P02 $P10 $P11 $P12 $P20 $P21 $P22 +# +# project output corners to input domain +# UL +#echo "UL 0,0" +#u=$u1 +#v=$v1 +#echo "u,v=$u,$v" +#inverseProject $u $v +#echo "i,j=$ii,$jj" +#echo "UR 255,0" +#u=$u2 +#v=$v2 +#echo "u,v=$u,$v" +#inverseProject $u $v +#echo "i,j=$ii,$jj" +#echo "BR 255,255" +#u=$u3 +#v=$v3 +#echo "u,v=$u,$v" +#inverseProject $u $v +#echo "i,j=$ii,$jj" +#echo "BL 0,255" +#u=$u4 +#v=$v4 +#echo "u,v=$u,$v" +#inverseProject $u $v +#echo "i,j=$ii,$jj" +#echo "C 127.5,127.5" +#u=$u5 +#v=$v5 +#echo "u,v=$u,$v" +#inverseProject $u $v +#echo "i,j=$ii,$jj" +' + +# deal with adjustments for auto settings +# first get the bounding box dimensions +uArr=($u1 $u2 $u3 $u4) +vArr=($v1 $v2 $v3 $v4) +index=0 +umin=1000000 +umax=-1000000 +vmin=1000000 +vmax=-1000000 +while [ $index -lt 4 ] + do + [ `echo "${uArr[$index]} < $umin" | bc` -eq 1 ] && umin=${uArr[$index]} + [ `echo "${uArr[$index]} > $umax" | bc` -eq 1 ] && umax=${uArr[$index]} + [ `echo "${vArr[$index]} < $vmin" | bc` -eq 1 ] && vmin=${vArr[$index]} + [ `echo "${vArr[$index]} > $vmax" | bc` -eq 1 ] && vmax=${vArr[$index]} + index=`expr $index + 1` +done +delu=`echo "scale=10; $umax - $umin + 1" | bc` +delv=`echo "scale=10; $vmax - $vmin + 1" | bc` +if [ "$auto" = "c" ] + then + offsetu=`echo "scale=10; ($width - $delu) / 2" | bc` + offsetv=`echo "scale=10; ($height - $delv) / 2" | bc` + u1=`echo "scale=0; $offsetu + ($u1 - $umin)" | bc` + v1=`echo "scale=0; $offsetv + ($v1 - $vmin)" | bc` + u2=`echo "scale=0; $offsetu + ($u2 - $umin)" | bc` + v2=`echo "scale=0; $offsetv + ($v2 - $vmin)" | bc` + u3=`echo "scale=0; $offsetu + ($u3 - $umin)" | bc` + v3=`echo "scale=0; $offsetv + ($v3 - $vmin)" | bc` + u4=`echo "scale=0; $offsetu + ($u4 - $umin)" | bc` + v4=`echo "scale=0; $offsetv + ($v4 - $vmin)" | bc` +elif [ "$auto" = "zc" ] + then + if [ `echo "$delu > $delv" | bc` -eq 1 ] + then + del=$delu + offsetu=0 + offsetv=`echo "scale=10; ($height - ($delv * $width / $delu)) / 2" | bc` + else + del=$delv + offsetu=`echo "scale=10; ($width - ($delu * $height / $delv)) / 2" | bc` + offsetv=0 + fi + u1=`echo "scale=0; $offsetu + (($u1 - $umin) * $width / $del)" | bc` + v1=`echo "scale=0; $offsetv + (($v1 - $vmin) * $height / $del)" | bc` + u2=`echo "scale=0; $offsetu + (($u2 - $umin) * $width / $del)" | bc` + v2=`echo "scale=0; $offsetv + (($v2 - $vmin) * $height / $del)" | bc` + u3=`echo "scale=0; $offsetu + (($u3 - $umin) * $width / $del)" | bc` + v3=`echo "scale=0; $offsetv + (($v3 - $vmin) * $height / $del)" | bc` + u4=`echo "scale=0; $offsetu + (($u4 - $umin) * $width / $del)" | bc` + v4=`echo "scale=0; $offsetv + (($v4 - $vmin) * $height / $del)" | bc` +fi +# +# now do the perspective distort +if [ "$auto" = "out" ] + then + distort="+distort" +else + distort="-distort" +fi + +im_version=`convert -list configure | \ + sed '/^LIB_VERSION_NUMBER /!d; s//,/; s/,/,0/g; s/,0*\([0-9][0-9]\)/\1/g' | head -n 1` +if [ "$im_version" -lt "06030600" ] + then + convert $tmpA -virtual-pixel $vp -background $bgcolor \ + -mattecolor $skycolor $distort Perspective \ + "0,0 $maxwidth,0 $maxwidth,$maxheight 0,$maxheight $u1,$v1 $u2,$v2 $u3,$v3 $u4,$v4" $outfile +else + convert $tmpA -virtual-pixel $vp -background $bgcolor \ + -mattecolor $skycolor $distort Perspective \ + "0,0 $u1,$v1 $maxwidth,0 $u2,$v2 $maxwidth,$maxheight $u3,$v3 0,$maxheight $u4,$v4" $outfile +fi +exit 0 |
