diff options
| author | yo mama <pepper@scannerjammer.com> | 2017-06-25 17:48:11 -0700 |
|---|---|---|
| committer | yo mama <pepper@scannerjammer.com> | 2017-06-25 17:48:11 -0700 |
| commit | a69680d9347372ffadbb52e455311f6d20ccaf57 (patch) | |
| tree | 94db39fd1dc775e293734743823d670433024c87 | |
| parent | ea3138b1f6cad5d1958ca86030846939f926a267 (diff) | |
new
| -rwxr-xr-x | bin/3Drotate.py | 838 | ||||
| -rwxr-xr-x | bin/3Drotate.py.bak | 716 |
2 files changed, 1154 insertions, 400 deletions
diff --git a/bin/3Drotate.py b/bin/3Drotate.py index 7669ffa..a94a7a9 100755 --- a/bin/3Drotate.py +++ b/bin/3Drotate.py @@ -1,11 +1,12 @@ #!/usr/bin/python2.7 -import getopt +import re import numpy import sys +import os from subprocess import Popen, PIPE #{{{ usage -USAGE=""" +USAGE = """ USAGE: 3Drotate option=value infile outfile USAGE: 3Drotate [-h or -help] @@ -46,8 +47,9 @@ vp value virtual-pixel method; any valid IM virtual-pixel method; NAME: 3DROTATE -PURPOSE: To apply a perspective distortion to an image by providing rotation angles, -zoom, offsets, background color, perspective exaggeration and auto zoom/centering. +PURPOSE: To apply a perspective distortion to an image by +providing rotation angles, zoom, offsets, background color, +perspective exaggeration and auto zoom/centering. DESCRIPTION: 3DROTATE applies a perspective distortion to an image by providing any combination of three optional rotation angle: @@ -186,23 +188,27 @@ skycolor = "black" vp = "background" # set directory for temporary files -dir = "." # suggestions are dir="." or dir="/tmp" +directory = "." # suggestions are dir="." or dir="/tmp" pi = numpy.math.pi #}}} + # function to do dot product of 2 three element vectors def dot(vec1, vec2): return numpy.dot(vec1, vec2) -# function to do 3x3 matrix multiply M x N where input are rows of each matrix; M1 M2 M3 N1 N2 N3 + +# function to do 3x3 matrix multiply M x N where input +# are rows of each matrix; M1 M2 M3 N1 N2 N3 def matmul3(m0, m1, m2, n0, n1, n2): return numpy.matmul( [m0, m1, m2], [n0, n1, n2] ) + # function to project points from input to output domain -def forwardProjrect(mat, ii, jj): +def forwardProject(mat, ii, jj): #takes in a 3x3 matrix and scalars ii and jj #returns two scalars, uu and vv numu = mat[0][0] * ii + mat[0][1] * jj + mat[0][2] @@ -212,10 +218,17 @@ def forwardProjrect(mat, ii, jj): vv = numv / den return [uu, vv] + def errMsg(s): sys.stderr.write("%s\n") sys.exit(1) + +def usage(): + sys.stderr.write(USAGE) + sys.exit(1) + + def inverseProject(mat, uu, vv): #note this function is more exact in python version numi = (mat[0][0] * uu) + (mat[0][1] * vv) + mat[0][2] @@ -226,453 +239,478 @@ def inverseProject(mat, uu, vv): #FIXME chop off decimal for it to be like bash version return [ii, jj] + # function to invert a 3 x 3 matrix using method of adjoint # inverse is the transpose of the matrix of cofactors divided by the determinant def M3inverse(mat): return numpy.linalg.inv(mat) + def call_cmd(s): cmd = s.split(" ") - ps = Popen(cmd, stdout=PIPE, stderr=PIPE) + process = Popen(cmd, stdout=PIPE, stderr=PIPE) out, err = process.communicate() errcode = process.returncode if errcode > 0: errMsg(err) return out -# + # get input image size def imagesize(filepath): width = int(call_cmd("identify -format %w %s" % (filepath))) height = int(call_cmd("identify -format %h %s" % (filepath))) return width, height + # test for correct number of arguments and get values len_args = len(sys.argv) + if len_args == 1: - usage2() - sys.exit(1) + usage() elif (len_args > 15): errMsg("--- TOO MANY ARGUMENTS WERE PROVIDED ---") -else: - for arg in sys.argv: - if arg == "-h": - usage2() + +for arg in sys.argv: + if arg == "-h": + usage() + if arg == "-": + break # FIXME + test = re.match(r'pan=(\d+\.\d+)', arg, flags=re.IGNORECASE) + if test: + pan = float(test.group(1)) + if (pan > 180) or (pan < -180): + errMsg( + "PAN=%s MUST BE GREATER THAN -180 AND LESS THAN +180" + ) % pan + sys.exit(1) + panang = numpy.multiply(numpy.pi, numpy.divide(pan, 180)) + sinpan = numpy.sin(panang) + cospan = numpy.cos(panang) + Rp0 = [cospan, 0, sinpan] + Rp1 = [0, 1, 0] + Rp2 = [-sinpan, 0, cospan] + # do matrix multiply to get new rotation matrix + newmat = matmul3(Rp0, Rp1, Rp2, R0, R1, R2) + #RESETS CONSTANTS HERE, the GLOBAL ROTATION MATRIX + R0 = newmat[0] + R1 = newmat[1] + R2 = newmat[2] + test = re.match(r'tilt=(\d+\.\d+)', arg, flags=re.IGNORECASE) # tilt angle + if test: + tilt = float(test.group(1)) + if not (tilt > -180) or not (tilt < 180): + errMsg( + "TILT=%s MUST BE LESS THAN 180 AND GREATER THAN -180" + ) % tilt sys.exit(1) - if arg == "-": - break #fixme - test = re.match(r'pan=(\d+\.\d+)', arg, flags=re.IGNORECASE) - if test: - pan = float(test.group(1)) - if (pan > 180) or (pan < -180): - errMsg("PAN=%s MUST BE GREATER THAN -180 AND LESS THAN +180" - ) % pan - sys.exit(1) - panang = numpy.multiply(numpy.pi, numpy.divide(pan, 180)) - sinpan = numpy.sin(panang) - cospan = numpy.cos(panang) - Rp0 = [cospan, 0, sinpan] - Rp1 = [0, 1, 0] - Rp2 = [-sinpan, 0, cospan] - # do matrix multiply to get new rotation matrix - newmat = matmul3(Rp0, Rp1, Rp2, R0, R1, R2) - #RESETS CONSTANTS HERE, the GLOBAL ROTATION MATRIX - R0 = newmat[0] - R1 = newmat[1] - R2 = newmat[2] - test = re.match(r'tilt=(\d+\.\d+)', arg, flags=re.IGNORECASE) # tilt angle - if test: - tilt = float(test.group(1)) - if not (tilt > -180) or not (tilt < 180): - errMsg("TILT=%s MUST BE LESS THAN 180 AND GREATER THAN -180" - ) % tilt - sys.exit(1) - tiltang = numpy.multiply(numpy.py, numpy.divide(tilt, 180)) - sintilt = numpy.sin(tiltang) - costilt = numpy.cos(tiltang) - Rt0 = [1, 0, 0] - Rt1 = [0, costilt, sintilt] - Rt2 = [0, sintiltm, costilt] - # do matrix multiply to get new rotation matrix - newmat = matmul3(Rt0, Rt1, Rt2, R0, R1, R2) - #again resets the matrix ... hmm - R0 = newmat[0] - R1 = newmat[1] - R2 = newmat[2] - test = re.match(r'roll=(\d+\.\d+)', arg, flags=re.IGNORECASE) # roll angle - if test: - roll = float(test.group(1)) - if not (roll > -180) or not (roll < 180): - errMsg("ROLL=%s MUST BE LESS THAN 180 AND GREATER THAN -180" - ) % roll + tiltang = numpy.multiply(numpy.py, numpy.divide(tilt, 180)) + sintilt = numpy.sin(tiltang) + costilt = numpy.cos(tiltang) + Rt0 = [1, 0, 0] + Rt1 = [0, costilt, sintilt] + Rt2 = [0, -sintilt, costilt] + # do matrix multiply to get new rotation matrix + newmat = matmul3(Rt0, Rt1, Rt2, R0, R1, R2) + #again resets the matrix ... hmm + R0 = newmat[0] + R1 = newmat[1] + R2 = newmat[2] + test = re.match(r'roll=(\d+\.\d+)', arg, flags=re.IGNORECASE) # roll angle + if test: + roll = float(test.group(1)) + if not (roll > -180) or not (roll < 180): + errMsg( + "ROLL=%s MUST BE LESS THAN 180 AND GREATER THAN -180" + ) % roll - rollang = numpy.multiply(numpy.py, numpy.divide(roll, 180)) - sinroll = numpy.sin(rollang) - cosroll = numpy.cos(rollang) - Rr0 = [cosroll, sinroll, 0] - Rr1 = [-sinroll, cosroll, 0] - Rr2 = [0, 0, 1] - # do matrix multiply to get new rotation matrix - newmat = matmul3(Rr0, Rr1, Rr2, R0, R1, R2) - R0 = newmat[0] - R1 = newmat[1] - R2 = newmat[2] - test = re.match(r'pef=(\d+\.\d+)', arg, flags=re.IGNORECASE) # pef angle - if test: - pef = float(test.group(1)) - if not (pef > 0) or not (pef < numpy.pi): - errMsg("PEF=%s MUST BE LESS THAN PI AND GREATER THAN 0" - ) % pef - test = re.match(r'idx=(\d+\.\d+)', arg, flags=re.IGNORECASE) # idx angle - if test: - idx = float(test.group(1)) - if not (idx >= 0): - errMsg("IDX=%s MUST BE 0 or GREATER" - ) % idx - di = idx - test = re.match(r'idy=(\d+\.\d+)', arg, flags=re.IGNORECASE) - if test: - idy = float(test.group(1)) - if not (idy >= 0): - errMsg("IDY=%s MUST BE 0 or GREATER" - ) % idy - dj = idy - test = re.match(r'odx=(\d+\.\d+)', arg, flags=re.IGNORECASE) - if test: - odx = float(test.group(1)) - if not (odx >= 0): - errMsg("ODX=%s MUST BE 0 or GREATER" - ) % odx - du = odx - test = re.match(r'ody=(\d+\.\d+)', arg, flags=re.IGNORECASE) - if test: - ody = float(test.group(1)) - if not (ody > 0): - errMsg("ODY=%s MUST BE 0 or GREATER" - ) % ody - dv = ody - test = re.match(r'zoom=(\d+\.\d+)', arg, flags=re.IGNORECASE) - if test: - zoom = float(test.group(1)) - if not (zoom < -1 or zoom > 1): - errMsg("ODY=%s MUST BE GREATER THAN 1 OR LESS THAN -1" - ) % zoom - test = re.match(r'bgcolor=([^ ]+)', arg, flags=re.IGNORECASE) - if test: - bgcolor = test.group(1) - test = re.match(r'skycolor=([^ ]+)', arg, flags=re.IGNORECASE) - if test: - skycolor = test.group(1) - test = re.match(r'vp=([^ ]+)', arg, flags=re.IGNORECASE) - if test: - vp = test.group(1).lower() - if vp not in [ - "background", "dither", "edge", - "mirror", "random", "tile", "transparent" - ]: - errMsg("VP=%s IS NOT A VALID VALUE" % (vp)) - test = re.match(r'auto=([^ ]+)', arg, flags=re.IGNORECASE) - if test: - auto = test.group(1).lower() - if auto not in [ - "c", "zc", "out" - ]: - errMsg("AUTO=%s IS NOT A VALID VALUE" % (auto)) - # - # get infile and outfile - infile = sys.argv[-2] - outfile = sys.argv[-1] - for a in [infile, outfile]: - if re.match(r'.*=.*', a): - errMsg("%s is not a valid filepath" % a) + rollang = numpy.multiply(numpy.py, numpy.divide(roll, 180)) + sinroll = numpy.sin(rollang) + cosroll = numpy.cos(rollang) + Rr0 = [cosroll, sinroll, 0] + Rr1 = [-sinroll, cosroll, 0] + Rr2 = [0, 0, 1] + # do matrix multiply to get new rotation matrix + newmat = matmul3(Rr0, Rr1, Rr2, R0, R1, R2) + R0 = newmat[0] + R1 = newmat[1] + R2 = newmat[2] + test = re.match(r'pef=(\d+\.\d+)', arg, flags=re.IGNORECASE) # pef angle + if test: + pef = float(test.group(1)) + if not (pef > 0) or not (pef < numpy.pi): + errMsg( + "PEF=%s MUST BE LESS THAN PI AND GREATER THAN 0" + ) % pef + test = re.match(r'idx=(\d+\.\d+)', arg, flags=re.IGNORECASE) # idx angle + if test: + idx = float(test.group(1)) + if not (idx >= 0): + errMsg( + "IDX=%s MUST BE 0 or GREATER" + ) % idx + di = idx + test = re.match(r'idy=(\d+\.\d+)', arg, flags=re.IGNORECASE) + if test: + idy = float(test.group(1)) + if not (idy >= 0): + errMsg( + "IDY=%s MUST BE 0 or GREATER" + ) % idy + dj = idy + test = re.match(r'odx=(\d+\.\d+)', arg, flags=re.IGNORECASE) + if test: + odx = float(test.group(1)) + if not (odx >= 0): + errMsg( + "ODX=%s MUST BE 0 or GREATER" + ) % odx + du = odx + test = re.match(r'ody=(\d+\.\d+)', arg, flags=re.IGNORECASE) + if test: + ody = float(test.group(1)) + if not (ody > 0): + errMsg( + "ODY=%s MUST BE 0 or GREATER" + ) % ody + dv = ody + test = re.match(r'zoom=(\d+\.\d+)', arg, flags=re.IGNORECASE) + if test: + zoom = float(test.group(1)) + if not (zoom < -1 or zoom > 1): + errMsg( + "ODY=%s MUST BE GREATER THAN 1 OR LESS THAN -1" + ) % zoom + test = re.match(r'bgcolor=([^ ]+)', arg, flags=re.IGNORECASE) + if test: + bgcolor = test.group(1) + test = re.match(r'skycolor=([^ ]+)', arg, flags=re.IGNORECASE) + if test: + skycolor = test.group(1) + test = re.match(r'vp=([^ ]+)', arg, flags=re.IGNORECASE) + if test: + vp = test.group(1).lower() + if vp not in [ + "background", "dither", "edge", + "mirror", "random", "tile", "transparent" + ]: + errMsg("VP=%s IS NOT A VALID VALUE" % (vp)) + test = re.match(r'auto=([^ ]+)', arg, flags=re.IGNORECASE) + if test: + auto = test.group(1).lower() + if auto not in [ + "c", "zc", "out" + ]: + errMsg("AUTO=%s IS NOT A VALID VALUE" % (auto)) +# +# get infile and outfile +infile = sys.argv[-2] +outfile = sys.argv[-1] +for a in [infile, outfile]: + if re.match(r'.*=.*', a): + errMsg("%s is not a valid filepath" % a) - # setup temporary images and auto delete upon exit - # use mpc/cache to hold input image temporarily in memory - pid = os.getpid() +# setup temporary images and auto delete upon exit +# use mpc/cache to hold input image temporarily in memory +pid = os.getpid() - tmpA = "%s/3Drotate_%s.mpc" % (directory, pid) - tmpB = "%s/3Drotate_%s.cache" % (directory, pid) - os.unlink(tmpA,tmpB) - os.unlink(tmpA,tmpB) +tmpA = "%s/3Drotate_%s.mpc" % (directory, pid) +tmpB = "%s/3Drotate_%s.cache" % (directory, pid) +os.unlink(tmpA, tmpB) +os.unlink(tmpA, tmpB) - # test that infile provided - if not os.path.exists(infile): - errMsg("NO INPUT FILE SPECIFIED") - # test that outfile provided - if not outfile: - errMsg("NO OUTPUT FILE SPECIFIED") +# test that infile provided +if not os.path.exists(infile): + errMsg("NO INPUT FILE SPECIFIED") +# test that outfile provided +if not outfile: + errMsg("NO OUTPUT FILE SPECIFIED") - cmd = ['convert', '-quiet', '-regard-warnings', infile, '+repage', tmpA] - call_cmd(cmd) - if not pef: - pef = 1 +cmd = ['convert', '-quiet', '-regard-warnings', infile, '+repage', tmpA] +call_cmd(cmd) +if not pef: + pef = 1 - # get input image width and height - imagesize() - maxwidth = width - 1 - maxheight = height - 1 +# get input image width and height +width, height = imagesize() +maxwidth = width - 1 +maxheight = height - 1 - # deal with auto adjustments to values - if auto == "zc": - du = 0 - dv = 0 - zoom = 1 - elif auto == "c": - du = 0 - dv = 0 +# deal with auto adjustments to values +if auto == "zc": + du = 0 + dv = 0 + zoom = 1 +elif auto == "c": + du = 0 + dv = 0 - # convert offsets of rotation point to relative to pixel 0,0 - di = numpy.divide(numpy.add(di, numpy.divide(numpy.subtract(width,1), 2)),1) - dj = numpy.divide( - numpy.add(dj, numpy.divide(numpy.subtract(height, 1), 2)), 1) - du = numpy.divide(du, 1) - dv = numpy.divide(dv, 1) +# convert offsets of rotation point to relative to pixel 0,0 +di = numpy.divide(numpy.add(di, numpy.divide(numpy.subtract(width, 1), 2)), 1) +dj = numpy.divide( + numpy.add(dj, numpy.divide(numpy.subtract(height, 1), 2)), 1) +du = numpy.divide(du, 1) +dv = numpy.divide(dv, 1) - # convert zoom to scale factors - if zoom >= 1: - sx = numpy.divide(1, zoom) - sy = sx - elif zoom <= -1: - sx = numpy.divide(-zoom, 1) - sy = sx +# convert zoom to scale factors +if zoom >= 1: + sx = numpy.divide(1, zoom) + sy = sx +elif zoom <= -1: + sx = numpy.divide(-zoom, 1) + sy = sx - #{{{explanation - # Consider the picture placed on the Z=0 plane and the camera a distance - # Zc=f above the picture plane looking straight down at the image center. - # Now the perspective equations (in 3-D) are defined as (x,y,f) = M (X',Y',Z'), - # where the camera orientation matrix M is the identity matrix but with M22=-1 - # because the camera is looking straight down along -Z. - # Thus a reflection transformation relative to the ground plane coordinates. - # Let the camera position Zc=f=(sqrt(ins*ins + inl*inl)) / ( 2 tan(fov/2) ) - # Now we want to rotate the ground points corresponding to the picture corners. - # The basic rotation is (X',Y',Z') = R (X,Y,0), where R is the rotation matrix - # involving pan, tilt and roll. - # But we need to convert (X,Y,0) to (X,Y,1) and also to offset for Zc=f - # First we note that (X,Y,0) = (X,Y,1) - (0,0,1) - # Thus the equation becomes (x,y,f) = M {R [(X,Y,1) - (0,0,1)] - (0,0,Zc)} = MT (X,Y,1) - # But R [(X,Y,1) - (0,0,1)] = R [II (X,Y,1) - S (X,Y,1)] = R (II-S) (X,Y,1), where - # II is the identity matrix and S is an all zero matrix except for S22=1. - # Thus (II-S) is the identity matrix with I22=0 and - # RR = R (II-S) is just R with the third column all zeros. - # Thus we get (x,y,f) = M {RR (X,Y,1) - (0,0,Zc)}. - # But M {RR (X,Y,1) - (0,0,Zc)} = M {RR(X,Y,1) - D (X,Y,1)}, where - # D is an all zero matrix with D22 = Zc = f. - # So that we get M (RR-D) (X,Y,1) = MT (X,Y,1), where - # where T is just R with the third column (0,0,-f), i.e. T02=0, T12=0, T22=-f - # But we need to allow for scaling and offset of the output coordinates and - # conversion from (x,y,f) to (u,v,1)=O and conversion of input coordinates - # from (X,Y,1) to (i,j,1)=I. - # Thus the forward transformation becomes AO=MTBI or O=A'MTBI or O=PI, - # where prime means inverse. - # However, to do the scaling of the output correctly, need to offset by the input - # plus output offsets, then scale, which is all put into A'. - # Thus the forward transformation becomes AO=MTBI or O=A'MTBI where A'=Ai - # but we will merge A'M into Aim - # Thus the inverse transform becomes - # I=QO where Q=P' - # A=output scaling, offset and conversion matrix - # B=input offset and conversion matrix (scaling only needs to be done in one place) - # M=camera orientation matrix - # R=image rotation matrix Rroll Rtilt Rpan - # T=matrix that is R but R33 offset by f + 1 - # O=output coords vector (i,j,1) - # I=input coords vector (u,v,1)=(is,il,1) - # P=forward perspective transformation matrix - # Q=inverse perspective transformation matrix - # - # For a 35 mm camera whose film format is 36mm wide and 24mm tall, when the focal length - # is equal to the diagonal, the field of view is 53.13 degrees and this is - # considered a normal view equivalent to the human eye. - # See http://www.panoramafactory.com/equiv35/equiv35.html - # Max limit on dfov is 180 degrees (pef=3.19) where get single line like looking at picture on edge. - # Above this limit the picture becomes like the angles get reversed. - # Min limit on dfov seems to be slightly greater than zero degrees. - # Practical limits on dfov depend upon orientation angles. - # For tilt=45, this is about 2.5 dfov (pef=2.5). Above this, some parts of the picture - # that are cut off at the bottom, get wrapped and stretched in the 'sky'. - #}}} +#{{{explanation +# Consider the picture placed on the Z=0 plane and the camera a distance +# Zc=f above the picture plane looking straight down at the image center. +# Now the perspective equations (in 3-D) are defined as (x,y,f) = M (X',Y',Z'), +# where the camera orientation matrix M is the identity matrix but with M22=-1 +# because the camera is looking straight down along -Z. +# Thus a reflection transformation relative to the ground plane coordinates. +# Let the camera position Zc=f=(sqrt(ins*ins + inl*inl)) / ( 2 tan(fov/2) ) +# Now we want to rotate the ground points corresponding to the picture corners. +# The basic rotation is (X',Y',Z') = R (X,Y,0), where R is the rotation matrix +# involving pan, tilt and roll. +# But we need to convert (X,Y,0) to (X,Y,1) and also to offset for Zc=f +# First we note that (X,Y,0) = (X,Y,1) - (0,0,1) +# Thus the equation becomes +# (x,y,f) = M {R [(X,Y,1) - (0,0,1)] - (0,0,Zc)} = MT (X,Y,1) +# But R [(X,Y,1) - (0,0,1)] = R [II (X,Y,1) - S (X,Y,1)] = R (II-S) (X,Y,1), +# where II is the identity matrix and S is an all zero matrix except for S22=1. +# Thus (II-S) is the identity matrix with I22=0 and +# RR = R (II-S) is just R with the third column all zeros. +# Thus we get (x,y,f) = M {RR (X,Y,1) - (0,0,Zc)}. +# But M {RR (X,Y,1) - (0,0,Zc)} = M {RR(X,Y,1) - D (X,Y,1)}, where +# D is an all zero matrix with D22 = Zc = f. +# So that we get M (RR-D) (X,Y,1) = MT (X,Y,1), where +# where T is just R with the third column (0,0,-f), i.e. T02=0, T12=0, T22=-f +# But we need to allow for scaling and offset of the output coordinates and +# conversion from (x,y,f) to (u,v,1)=O and conversion of input coordinates +# from (X,Y,1) to (i,j,1)=I. +# Thus the forward transformation becomes AO=MTBI or O=A'MTBI or O=PI, +# where prime means inverse. +# However, to do the scaling of the output correctly, need to offset by the +# input plus output offsets, then scale, which is all put into A'. +# Thus the forward transformation becomes AO=MTBI or O=A'MTBI where A'=Ai +# but we will merge A'M into Aim +# Thus the inverse transform becomes +# I=QO where Q=P' +# A=output scaling, offset and conversion matrix +# B=input offset and conversion matrix +# (scaling only needs to be done in one place) +# M=camera orientation matrix +# R=image rotation matrix Rroll Rtilt Rpan +# T=matrix that is R but R33 offset by f + 1 +# O=output coords vector (i,j,1) +# I=input coords vector (u,v,1)=(is,il,1) +# P=forward perspective transformation matrix +# Q=inverse perspective transformation matrix +# +# For a 35 mm camera whose film format is 36mm wide +# and 24mm tall, when the focal length +# is equal to the diagonal, the field of view is 53.13 degrees and this is +# considered a normal view equivalent to the human eye. +# See http://www.panoramafactory.com/equiv35/equiv35.html +# Max limit on dfov is 180 degrees (pef=3.19) +# where get single line like looking at picture on edge. +# Above this limit the picture becomes like the angles get reversed. +# Min limit on dfov seems to be slightly greater than zero degrees. +# Practical limits on dfov depend upon orientation angles. +# For tilt=45, this is about 2.5 dfov (pef=2.5). +# Above this, some parts of the picture +# that are cut off at the bottom, get wrapped and stretched in the 'sky'. +#}}} - dfov = numpy.divide( - numpy.multpily(180, numpy.arctan(36/24)), numpy.pi) - pfact = 1 - if pef == 0: #fixme - pfact = numpy.divide(0.01, dfov) - else: - pfact = pef +dfov = numpy.divide( + numpy.multpily(180, numpy.arctan(36/24)), numpy.pi) +pfact = 1 +if pef == 0: # FIXME + pfact = numpy.divide(0.01, dfov) +else: + pfact = pef - #compute new field of view based upon pef (pfact) - dfov = numpy.multiply(pfact, dfov) - dfov2 = numpy.divide(dfov, 2) - arg = numpy.multiply(numpy.pi, numpy.divide(dfov, 180)) - sfov = numpy.sin(arg) - cfov = numpy.cos(arg) - tfov = numpy.divide(sfov, cfov) +#compute new field of view based upon pef (pfact) +dfov = numpy.multiply(pfact, dfov) +dfov2 = numpy.divide(dfov, 2) +arg = numpy.multiply(numpy.pi, numpy.divide(dfov, 180)) +sfov = numpy.sin(arg) +cfov = numpy.cos(arg) +tfov = numpy.divide(sfov, cfov) - # calculate focal length in same units as wall (picture) using dfov - diag = numpy.sqrt( - numpy.multiply(width, width), numpy.multiply(height, height)) - focal = numpy.divide(diag, numpy.multiply(2, tfov)) +# calculate focal length in same units as wall (picture) using dfov +diag = numpy.sqrt( + numpy.multiply(width, width), numpy.multiply(height, height)) +focal = numpy.divide(diag, numpy.multiply(2, tfov)) - # calculate forward transform matrix Q +# calculate forward transform matrix Q - # define the input offset and conversion matrix - dim = -di - B0 = [1, 0, dim] - B1 = [0, -1, dj] - B2 = [0, 0, 1] +# define the input offset and conversion matrix +dim = -di +B0 = [1, 0, dim] +B1 = [0, -1, dj] +B2 = [0, 0, 1] - # define the output scaling, offset and conversion matrix inverse Ai and merge with M - # to become Aim - #A0=($sx 0 $sx*(-$du-$di)) - #A1=(0 -$sy $sy*($dv+$dj)) - #A2=(0 0 -$focal) - #M0=(1 0 0) - #M1=(0 1 0) - #M2=(0 0 -1) - aim00 = numpy.divide(1, sx) - aim02 = -numpy.divide( - numpy.multiply(sx, numpy.add(di, du)), numpy.multiply(sx, focal)) - aim11 = numpy.divide(-1, sy) - aim12 = -numpy.divide( - numpy.multiply(sy, numpy.add(dj, dv)), numpy.multiply(sy, focal)) - aim22 = -numpy.divide(1, focal) - Aim0 = [aim00, 0, aim02] - Aim1 = [0, aim11, aim12] - Aim2 = [0, 0, aim22] +# define the output scaling, offset and conversion +# matrix inverse Ai and merge with M +# to become Aim +#A0=($sx 0 $sx*(-$du-$di)) +#A1=(0 -$sy $sy*($dv+$dj)) +#A2=(0 0 -$focal) +#M0=(1 0 0) +#M1=(0 1 0) +#M2=(0 0 -1) +aim00 = numpy.divide(1, sx) +aim02 = -numpy.divide( + numpy.multiply(sx, numpy.add(di, du)), numpy.multiply(sx, focal)) +aim11 = numpy.divide(-1, sy) +aim12 = -numpy.divide( + numpy.multiply(sy, numpy.add(dj, dv)), numpy.multiply(sy, focal)) +aim22 = -numpy.divide(1, focal) +Aim0 = [aim00, 0, aim02] +Aim1 = [0, aim11, aim12] +Aim2 = [0, 0, aim22] - # now do successive matrix multiplies - # from right towards left of main equation P=A'RB +# now do successive matrix multiplies +# from right towards left of main equation P=A'RB - # convert R to T by setting T02=T12=0 and T22=-f - T0 = [R0[0], R0[1], 0] - T1 = [R1[0], R1[1], 0] - T2 = [R2[0], R2[1], -focal] +# convert R to T by setting T02=T12=0 and T22=-f +T0 = [R0[0], R0[1], 0] +T1 = [R1[0], R1[1], 0] +T2 = [R2[0], R2[1], -focal] - # multiply T x B = P - p_mat = matmul3(T0, T1, T2, B0, B1, B2) +# multiply T x B = P +p_mat = matmul3(T0, T1, T2, B0, B1, B2) - # multiply Aim x P = P - newmat = matmul3(Aim0, Aim1, Aim2, p_mat[0], p_mat[1], p_mat[2]) +# multiply Aim x P = P +newmat = matmul3(Aim0, Aim1, Aim2, p_mat[0], p_mat[1], p_mat[2]) - # # the resulting P matrix is now - # the perspective coefficients for the inverse transformation - # P00= newmat[0][0] - # P01= newmat[0][1] - # P02= newmat[0][2] - # P10= newmat[1][0] - # P11= newmat[1][1] - # P12= newmat[1][2] - # P20= newmat[2][0] - # P21= newmat[2][1] - # P22= newmat[2][2] +# # the resulting P matrix is now +# the perspective coefficients for the inverse transformation +# P00= newmat[0][0] +# P01= newmat[0][1] +# P02= newmat[0][2] +# P10= newmat[1][0] +# P11= newmat[1][1] +# P12= newmat[1][2] +# P20= newmat[2][0] +# P21= newmat[2][1] +# P22= newmat[2][2] - # project input corners to output domain - #echo "UL" - i = 0 - j = 0 - u1, v1 = forwardProject(newmat, i, j) #using Aim matrix and p_mat +# project input corners to output domain +#echo "UL" +i = 0 +j = 0 +u1, v1 = forwardProject(newmat, i, j) # using Aim matrix and p_mat - i = maxwidth - j = 0 - u2, v2 = forwardProject(newmat, i, j) #using Aim matrix and p_mat +i = maxwidth +j = 0 +u2, v2 = forwardProject(newmat, i, j) # using Aim matrix and p_mat - i = maxwidth - j = maxheight +i = maxwidth +j = maxheight - u3, v3 = forwardProject(newmat, i, j) #using Aim matrix and p_mat - i = 0 - j = maxheight +u3, v3 = forwardProject(newmat, i, j) # using Aim matrix and p_mat +i = 0 +j = maxheight - u4, v4 = forwardProject(newmat, i, j) #using Aim matrix and p_mat +u4, v4 = forwardProject(newmat, i, j) # using Aim matrix and p_mat - # deal with adjustments for auto settings - # first get the bounding box dimensions - uArr = [u1, u2, u3, u4] - vArr = [v1, v2, v3, v4] - umin = 1000000 - umax = -1000000 - vmin = 1000000 - vmax = -1000000 - for index in range(0, 4): - if uArr[index] < umin: - umin = uArr[index] - if uArr[index] > umax: - umax = uArr[index] - if vArr[index] < vmin: - vmin=vArr[index] - if vArr[index] > vmax: - vmax=vArr[index] - delu = numpy.add(numpy.subtract(umax, umin), 1) - delv = numpy.add(numpy.subtract(vmax, vmin), 1) - if auto == "c": - offsetu = `echo "scale = 10; ($width - $delu) / 2" | bc` - offsetv = `echo "scale = 10; ($height - $delv) / 2" | bc` - u1 = `echo "scale = 0; $offsetu + ($u1 - $umin)" | bc` - v1 = `echo "scale = 0; $offsetv + ($v1 - $vmin)" | bc` - u2 = `echo "scale = 0; $offsetu + ($u2 - $umin)" | bc` - v2 = `echo "scale = 0; $offsetv + ($v2 - $vmin)" | bc` - u3 = `echo "scale = 0; $offsetu + ($u3 - $umin)" | bc` - v3 = `echo "scale = 0; $offsetv + ($v3 - $vmin)" | bc` - u4 = `echo "scale = 0; $offsetu + ($u4 - $umin)" | bc` - v4 = `echo "scale = 0; $offsetv + ($v4 - $vmin)" | bc` -elif [ "$auto" = "zc" ] - then - if [ `echo "$delu > $delv" | bc` -eq 1 ] - then - del=$delu - offsetu=0 - offsetv=`echo "scale=10; ($height - ($delv * $width / $delu)) / 2" | bc` - else - del=$delv - offsetu=`echo "scale=10; ($width - ($delu * $height / $delv)) / 2" | bc` - offsetv=0 - fi - u1 = numpy.add( - offsetu, - numpy.multpily(numpy.subtract(u1, umin), numpy.divide(width, del))) - v1 = numpy.add( - offsetv, - numpy.multpily(numpy.subtract(v1, vmin), numpy.divide(height, del))) - u2 = numpy.add( - offsetu, - numpy.multpily(numpy.subtract(u2, umin), numpy.divide(width, del))) - v2 = numpy.add( - offsetv, - numpy.multpily(numpy.subtract(v2, vmin), numpy.divide(height, del))) - u3 = numpy.add( - offsetu, - numpy.multpily(numpy.subtract(u3, umin), numpy.divide(width, del))) - v3 = numpy.add( - offsetv, - numpy.multpily(numpy.subtract(v3, vmin), numpy.divide(height, del))) - u4 = numpy.add( - offsetu, - numpy.multpily(numpy.subtract(u4, umin), numpy.divide(width, del))) - v4 = numpy.add( - offsetv, - numpy.multpily(numpy.subtract(v4, vmin), numpy.divide(height, del))) -fi +# deal with adjustments for auto settings +# first get the bounding box dimensions +uArr = [u1, u2, u3, u4] +vArr = [v1, v2, v3, v4] +umin = 1000000 +umax = -1000000 +vmin = 1000000 +vmax = -1000000 +for index in range(0, 4): + if uArr[index] < umin: + umin = uArr[index] + if uArr[index] > umax: + umax = uArr[index] + if vArr[index] < vmin: + vmin = vArr[index] + if vArr[index] > vmax: + vmax = vArr[index] +delu = numpy.add(numpy.subtract(umax, umin), 1) +delv = numpy.add(numpy.subtract(vmax, vmin), 1) +if auto == "c": + offsetu = numpy.divide(numpy.subtract(width, delu), 2) + offsetv = numpy.divide(numpy.subtract(height, delv), 2) + #FIXME may need to cast as int variables below (u1-v4) + u1 = numpy.add(offsetu, numpy.subtract(u1, umin)) + v1 = numpy.add(offsetv, numpy.subtract(v1, vmin)) + u2 = numpy.add(offsetu, numpy.subtract(u2, umin)) + v2 = numpy.add(offsetv, numpy.subtract(v2, vmin)) + u3 = numpy.add(offsetu, numpy.subtract(u3, umin)) + v3 = numpy.add(offsetv, numpy.subtract(v3, vmin)) + u4 = numpy.add(offsetu, numpy.subtract(u4, umin)) + v4 = numpy.add(offsetv, numpy.subtract(v4, vmin)) +elif auto == "zc": + if delu > delv: + _del = delu + offsetu = 0 + offsetv = numpy.divide( + numpy.subtract( + height, numpy.divide(numpy.multpily(delv, width), delu)), 2) + else: + _del = delv + offsetu = numpy.divide( + numpy.subtract( + width, numpy.divide(numpy.multpily(delu, height), delv)), 2) + offsetv = 0 +u1 = numpy.add( + offsetu, + numpy.multpily(numpy.subtract(u1, umin), numpy.divide(width, _del))) +v1 = numpy.add( + offsetv, + numpy.multpily(numpy.subtract(v1, vmin), numpy.divide(height, _del))) +u2 = numpy.add( + offsetu, + numpy.multpily(numpy.subtract(u2, umin), numpy.divide(width, _del))) +v2 = numpy.add( + offsetv, + numpy.multpily(numpy.subtract(v2, vmin), numpy.divide(height, _del))) +u3 = numpy.add( + offsetu, + numpy.multpily(numpy.subtract(u3, umin), numpy.divide(width, _del))) +v3 = numpy.add( + offsetv, + numpy.multpily(numpy.subtract(v3, vmin), numpy.divide(height, _del))) +u4 = numpy.add( + offsetu, + numpy.multpily(numpy.subtract(u4, umin), numpy.divide(width, _del))) +v4 = numpy.add( + offsetv, + numpy.multpily(numpy.subtract(v4, vmin), numpy.divide(height, _del))) # # now do the perspective distort -if [ "$auto" = "out" ] - then - distort="+distort" -else - distort="-distort" -fi +if auto == "out": + distort = "+distort" +else: + distort = "-distort" -im_version=`convert -list configure | \ - sed '/^LIB_VERSION_NUMBER /!d; s//,/; s/,/,0/g; s/,0*\([0-9][0-9]\)/\1/g' | head -n 1` -if [ "$im_version" -lt "06030600" ] - then - convert $tmpA -virtual-pixel $vp -background $bgcolor \ - -mattecolor $skycolor $distort Perspective \ - "0,0 $maxwidth,0 $maxwidth,$maxheight 0,$maxheight $u1,$v1 $u2,$v2 $u3,$v3 $u4,$v4" $outfile -else - convert $tmpA -virtual-pixel $vp -background $bgcolor \ - -mattecolor $skycolor $distort Perspective \ - "0,0 $u1,$v1 $maxwidth,0 $u2,$v2 $maxwidth,$maxheight $u3,$v3 0,$maxheight $u4,$v4" $outfile -fi -exit 0 +#im_version=`convert -list configure | \ +# sed '/^LIB_VERSION_NUMBER /!d; s//,/; s/,/,0/g; s/,0*\([0-9][0-9]\)/\1/g'\ +# | head -n 1` +#if [ "$im_version" -lt "06030600" ] +# then +# convert $tmpA -virtual-pixel $vp -background $bgcolor \ +# -mattecolor $skycolor $distort Perspective \ +# "0,0 $maxwidth,0 $maxwidth,$maxheight 0,$maxheight \ +# $u1,$v1 $u2,$v2 $u3,$v3 $u4,$v4" $outfile +#else +cmd = [ + "convert", tmpA, "-virtual-pixel", vp, "-background", bgcolor, + "-mattecolor", skycolor, distort, "Perspective", + "0,0", "%s,%s" % (u1, v1), + "%s,0" % (maxwidth), "%s,%s" % (u2, v2), + "%s,%s" % (maxwidth, maxheight), + "%s,%s" % (u3, v3), + "%s,%s" % (0, maxheight), + "%s,%s" % (u4, v4), + outfile +] +call_cmd(cmd) diff --git a/bin/3Drotate.py.bak b/bin/3Drotate.py.bak new file mode 100755 index 0000000..a94a7a9 --- /dev/null +++ b/bin/3Drotate.py.bak @@ -0,0 +1,716 @@ +#!/usr/bin/python2.7 +import re +import numpy +import sys +import os +from subprocess import Popen, PIPE + +#{{{ usage +USAGE = """ +USAGE: 3Drotate option=value infile outfile +USAGE: 3Drotate [-h or -help] + +OPTIONS: any one or more + +pan value rotation about image vertical centerline; + -180 to +180 (deg); default=0 +tilt value rotation about image horizontal centerline; + -180 to +180 (deg); default=0 +roll value rotation about the image center; + -180 to +180 (deg); default=0 +pef value perspective exaggeration factor; + 0 to 3.19; default=1 +idx value +/- pixel displacement in rotation point right/left + in input from center; default=0 +idy value +/- pixel displacement in rotation point down/up + in input from center; default=0 +odx value +/- pixel displacement in rotation point right/left + in output from center; default=0 +ody value +/- pixel displacement in rotation point down/up + in output from center; default=0 +zoom value output zoom factor; where value > 1 means zoom in + and < -1 means zoom out; value=1 means no change +bgcolor value the background color value; any valid IM image + color specification (see -fill); default is black +skycolor value the sky color value; any valid IM image + color specification (see -fill); default is black +auto c center bounding box in output + (odx and ody ignored) +auto zc zoom to fill and center bounding box in output + (odx, ody and zoom ignored) +auto out creates an output image of size needed to hold + the transformed image; (odx, ody and zoom ignored) +vp value virtual-pixel method; any valid IM virtual-pixel method; + default=background + +# + +NAME: 3DROTATE + +PURPOSE: To apply a perspective distortion to an image by +providing rotation angles, zoom, offsets, background color, +perspective exaggeration and auto zoom/centering. + +DESCRIPTION: 3DROTATE applies a perspective distortion to an image +by providing any combination of three optional rotation angle: +pan, tilt and roll with optional offsets and zoom and with an optional +control of the perspective exaggeration. The image is treated as if it +were painted on the Z=0 ground plane. The picture plane is then rotated +and then perspectively projected to a camera located a distance equal to +the focal length above the ground plane looking straight down along +the -Z direction. + + +ARGUMENTS: + +PAN is a rotation of the image about its vertical +centerline -180 to +180 degrees. Positive rotations turn the +right side of the image away from the viewer and the left side +towards the viewer. Zero is no rotation. A PAN of +/- 180 deg +achieves the same results as -flip. + +TILT is a rotation of the image about its horizontal +centerline -180 to +180 degrees. Positive rotations turn the top +of the image away from the viewer and the bottom towards the +viewer. Zero is no rotation. A TILT of +/- 180 deg +achieves the same results as -flop. + +ROLL (like image rotation) is a rotation in the plane of the +the image -180 to +180 degrees. Positive values are clockwise +and negative values are counter-clockwise. Zero is no rotation. +A ROLL of any angle achieves the same results as -rotate. + +PAN, TILT and ROLL are order dependent. If all three are provided, +then they will be done in whatever order specified. + +PEF is the perspective exaggeration factor. It ranges from 0 to 3.19. +A normal perspective is achieved with the default of 1. As PEF is +increased from 1, the perspective effect moves towards that of +a wide angle lens (more distortion). If PEF is decreased from 1 +the perspective effect moves towards a telephoto lens (less +distortion). PEF of 0.5 achieves an effect close to no perspective +distortion. As pef gets gets larger than some value which depends +upon the larger the pan, tilt and roll angles become, one reaches +a point where some parts of the picture become so distorted that +they wrap around and appear above the "horizon" + +IDX is the a pixel displacement of the rotation point in the input image +from the image center. Positive values shift to the right along the +sample direction; negative values shift to the left. The default=0 +corresponds to the image center. + +IDY is the a pixel displacement of the rotation point in the input image +from the image center. Positive values shift to downward along the +line direction; negative values shift upward. The default=0 +corresponds to the image center. + +ODX is the a pixel displacement from the center of the output image where +one wants the corresponding input image rotation point to appear. +Positive values shift to the right along the sample direction; negative +values shift to the left. The default=0 corresponds to the output image center. + +ODY is the a pixel displacement from the center of the output image where +one wants the corresponding input image rotation point to appear. +Positive values shift downward along the sample direction; negative +values shift upward. The default=0 corresponds to the output image center. + +ZOOM is the output image zoom factor. Values > 1 (zoomin) cause the image +to appear closer; whereas values < 1 (zoomout) cause the image to +appear further away. + +BGCOLOR is the color of the background to use to fill where the output image +is outside the area of the perspective of the input image. See the IM function +-fill for color specifications. Note that when using rgb(r,g,b), this must be +enclosed in quotes after the equal sign. + +SKYCOLOR is the color to use in the 'sky' area above the perspective 'horizon'. +See the IM function -fill for color specifications. Note that when using +rgb(r,g,b), this must be enclosed in quotes after the equal sign. + +AUTO can be either c, zc or out. If auto is c, then the resulting perspective +of the input image will have its bounding box centered in the output image +whose size will be the same as the input image. If +auto is zc, then the resulting perspective of the input image will have its +bounding box zoomed to fill its largest dimension to match the size of the +the input image and the other dimension will be centered in the output. If +auto is out, then the output image will be made as large or as small as +needed to just fill out the transformed input image. If any of these are +present, then the arguments OSHIFTX, OSHIFTY are ignored. + +VP is the virtual-pixel method, which allows the image to be extended outside +its bounds. For example, vp=background, then the background color is used to +fill the area in the output image which is outside the perspective view of +the input image. If vp=tile, then the perspective view will be tiled to fill +the output image. + +NOTE: The output image size will be the same as the input image size due +to current limitations on -distort Perspective. + +CAVEAT: No guarantee that this script will work on all platforms, +nor that trapping of inconsistent parameters is complete and +foolproof. Use At Your Own Risk. +""" + +#}}} + +#{{{ defaults +# set default value +# rotation angles and rotation matrix +pan = 0 +tilt = 0 +roll = 0 +R0 = [1, 0, 0] +R1 = [0, 1, 0] +R2 = [0, 0, 1] + +# scaling output only +sx = 1 +sy = 1 + +# offset du,dv = output; relative to center of image +du = 0 +dv = 0 + +# offset di,dj = input; relative to center of image +di = 0 +dj = 0 + +# perspective exaggeration factor +pef = 1 +# zoom +zoom = 1 +# background color +bgcolor = "black" +# sky color +skycolor = "black" + +# virtual-pixel method +vp = "background" + +# set directory for temporary files +directory = "." # suggestions are dir="." or dir="/tmp" + +pi = numpy.math.pi +#}}} + + +# function to do dot product of 2 three element vectors +def dot(vec1, vec2): + return numpy.dot(vec1, vec2) + + +# function to do 3x3 matrix multiply M x N where input +# are rows of each matrix; M1 M2 M3 N1 N2 N3 +def matmul3(m0, m1, m2, n0, n1, n2): + return numpy.matmul( + [m0, m1, m2], [n0, n1, n2] + ) + + +# function to project points from input to output domain +def forwardProject(mat, ii, jj): + #takes in a 3x3 matrix and scalars ii and jj + #returns two scalars, uu and vv + numu = mat[0][0] * ii + mat[0][1] * jj + mat[0][2] + numv = mat[1][0] * ii + mat[1][1] * jj + mat[1][2] + den = mat[2][0] * ii + mat[2][1] * jj + mat[2][2] + uu = numu / den + vv = numv / den + return [uu, vv] + + +def errMsg(s): + sys.stderr.write("%s\n") + sys.exit(1) + + +def usage(): + sys.stderr.write(USAGE) + sys.exit(1) + + +def inverseProject(mat, uu, vv): + #note this function is more exact in python version + numi = (mat[0][0] * uu) + (mat[0][1] * vv) + mat[0][2] + numj = (mat[1][0] * uu) + (mat[1][1] * vv) + mat[1][2] + den = (mat[2][0] * uu) + (mat[2][1] * vv) + mat[2][2] + ii = numi / den + jj = numj / den + #FIXME chop off decimal for it to be like bash version + return [ii, jj] + + +# function to invert a 3 x 3 matrix using method of adjoint +# inverse is the transpose of the matrix of cofactors divided by the determinant +def M3inverse(mat): + return numpy.linalg.inv(mat) + + +def call_cmd(s): + cmd = s.split(" ") + process = Popen(cmd, stdout=PIPE, stderr=PIPE) + out, err = process.communicate() + errcode = process.returncode + if errcode > 0: + errMsg(err) + return out + + +# get input image size +def imagesize(filepath): + width = int(call_cmd("identify -format %w %s" % (filepath))) + height = int(call_cmd("identify -format %h %s" % (filepath))) + return width, height + + +# test for correct number of arguments and get values +len_args = len(sys.argv) + +if len_args == 1: + usage() +elif (len_args > 15): + errMsg("--- TOO MANY ARGUMENTS WERE PROVIDED ---") + +for arg in sys.argv: + if arg == "-h": + usage() + if arg == "-": + break # FIXME + test = re.match(r'pan=(\d+\.\d+)', arg, flags=re.IGNORECASE) + if test: + pan = float(test.group(1)) + if (pan > 180) or (pan < -180): + errMsg( + "PAN=%s MUST BE GREATER THAN -180 AND LESS THAN +180" + ) % pan + sys.exit(1) + panang = numpy.multiply(numpy.pi, numpy.divide(pan, 180)) + sinpan = numpy.sin(panang) + cospan = numpy.cos(panang) + Rp0 = [cospan, 0, sinpan] + Rp1 = [0, 1, 0] + Rp2 = [-sinpan, 0, cospan] + # do matrix multiply to get new rotation matrix + newmat = matmul3(Rp0, Rp1, Rp2, R0, R1, R2) + #RESETS CONSTANTS HERE, the GLOBAL ROTATION MATRIX + R0 = newmat[0] + R1 = newmat[1] + R2 = newmat[2] + test = re.match(r'tilt=(\d+\.\d+)', arg, flags=re.IGNORECASE) # tilt angle + if test: + tilt = float(test.group(1)) + if not (tilt > -180) or not (tilt < 180): + errMsg( + "TILT=%s MUST BE LESS THAN 180 AND GREATER THAN -180" + ) % tilt + sys.exit(1) + tiltang = numpy.multiply(numpy.py, numpy.divide(tilt, 180)) + sintilt = numpy.sin(tiltang) + costilt = numpy.cos(tiltang) + Rt0 = [1, 0, 0] + Rt1 = [0, costilt, sintilt] + Rt2 = [0, -sintilt, costilt] + # do matrix multiply to get new rotation matrix + newmat = matmul3(Rt0, Rt1, Rt2, R0, R1, R2) + #again resets the matrix ... hmm + R0 = newmat[0] + R1 = newmat[1] + R2 = newmat[2] + test = re.match(r'roll=(\d+\.\d+)', arg, flags=re.IGNORECASE) # roll angle + if test: + roll = float(test.group(1)) + if not (roll > -180) or not (roll < 180): + errMsg( + "ROLL=%s MUST BE LESS THAN 180 AND GREATER THAN -180" + ) % roll + + rollang = numpy.multiply(numpy.py, numpy.divide(roll, 180)) + sinroll = numpy.sin(rollang) + cosroll = numpy.cos(rollang) + Rr0 = [cosroll, sinroll, 0] + Rr1 = [-sinroll, cosroll, 0] + Rr2 = [0, 0, 1] + # do matrix multiply to get new rotation matrix + newmat = matmul3(Rr0, Rr1, Rr2, R0, R1, R2) + R0 = newmat[0] + R1 = newmat[1] + R2 = newmat[2] + test = re.match(r'pef=(\d+\.\d+)', arg, flags=re.IGNORECASE) # pef angle + if test: + pef = float(test.group(1)) + if not (pef > 0) or not (pef < numpy.pi): + errMsg( + "PEF=%s MUST BE LESS THAN PI AND GREATER THAN 0" + ) % pef + test = re.match(r'idx=(\d+\.\d+)', arg, flags=re.IGNORECASE) # idx angle + if test: + idx = float(test.group(1)) + if not (idx >= 0): + errMsg( + "IDX=%s MUST BE 0 or GREATER" + ) % idx + di = idx + test = re.match(r'idy=(\d+\.\d+)', arg, flags=re.IGNORECASE) + if test: + idy = float(test.group(1)) + if not (idy >= 0): + errMsg( + "IDY=%s MUST BE 0 or GREATER" + ) % idy + dj = idy + test = re.match(r'odx=(\d+\.\d+)', arg, flags=re.IGNORECASE) + if test: + odx = float(test.group(1)) + if not (odx >= 0): + errMsg( + "ODX=%s MUST BE 0 or GREATER" + ) % odx + du = odx + test = re.match(r'ody=(\d+\.\d+)', arg, flags=re.IGNORECASE) + if test: + ody = float(test.group(1)) + if not (ody > 0): + errMsg( + "ODY=%s MUST BE 0 or GREATER" + ) % ody + dv = ody + test = re.match(r'zoom=(\d+\.\d+)', arg, flags=re.IGNORECASE) + if test: + zoom = float(test.group(1)) + if not (zoom < -1 or zoom > 1): + errMsg( + "ODY=%s MUST BE GREATER THAN 1 OR LESS THAN -1" + ) % zoom + test = re.match(r'bgcolor=([^ ]+)', arg, flags=re.IGNORECASE) + if test: + bgcolor = test.group(1) + test = re.match(r'skycolor=([^ ]+)', arg, flags=re.IGNORECASE) + if test: + skycolor = test.group(1) + test = re.match(r'vp=([^ ]+)', arg, flags=re.IGNORECASE) + if test: + vp = test.group(1).lower() + if vp not in [ + "background", "dither", "edge", + "mirror", "random", "tile", "transparent" + ]: + errMsg("VP=%s IS NOT A VALID VALUE" % (vp)) + test = re.match(r'auto=([^ ]+)', arg, flags=re.IGNORECASE) + if test: + auto = test.group(1).lower() + if auto not in [ + "c", "zc", "out" + ]: + errMsg("AUTO=%s IS NOT A VALID VALUE" % (auto)) +# +# get infile and outfile +infile = sys.argv[-2] +outfile = sys.argv[-1] +for a in [infile, outfile]: + if re.match(r'.*=.*', a): + errMsg("%s is not a valid filepath" % a) + + +# setup temporary images and auto delete upon exit +# use mpc/cache to hold input image temporarily in memory +pid = os.getpid() + +tmpA = "%s/3Drotate_%s.mpc" % (directory, pid) +tmpB = "%s/3Drotate_%s.cache" % (directory, pid) +os.unlink(tmpA, tmpB) +os.unlink(tmpA, tmpB) + +# test that infile provided +if not os.path.exists(infile): + errMsg("NO INPUT FILE SPECIFIED") +# test that outfile provided +if not outfile: + errMsg("NO OUTPUT FILE SPECIFIED") + +cmd = ['convert', '-quiet', '-regard-warnings', infile, '+repage', tmpA] +call_cmd(cmd) +if not pef: + pef = 1 + +# get input image width and height +width, height = imagesize() +maxwidth = width - 1 +maxheight = height - 1 + +# deal with auto adjustments to values +if auto == "zc": + du = 0 + dv = 0 + zoom = 1 +elif auto == "c": + du = 0 + dv = 0 + +# convert offsets of rotation point to relative to pixel 0,0 +di = numpy.divide(numpy.add(di, numpy.divide(numpy.subtract(width, 1), 2)), 1) +dj = numpy.divide( + numpy.add(dj, numpy.divide(numpy.subtract(height, 1), 2)), 1) +du = numpy.divide(du, 1) +dv = numpy.divide(dv, 1) + +# convert zoom to scale factors +if zoom >= 1: + sx = numpy.divide(1, zoom) + sy = sx +elif zoom <= -1: + sx = numpy.divide(-zoom, 1) + sy = sx + +#{{{explanation +# Consider the picture placed on the Z=0 plane and the camera a distance +# Zc=f above the picture plane looking straight down at the image center. +# Now the perspective equations (in 3-D) are defined as (x,y,f) = M (X',Y',Z'), +# where the camera orientation matrix M is the identity matrix but with M22=-1 +# because the camera is looking straight down along -Z. +# Thus a reflection transformation relative to the ground plane coordinates. +# Let the camera position Zc=f=(sqrt(ins*ins + inl*inl)) / ( 2 tan(fov/2) ) +# Now we want to rotate the ground points corresponding to the picture corners. +# The basic rotation is (X',Y',Z') = R (X,Y,0), where R is the rotation matrix +# involving pan, tilt and roll. +# But we need to convert (X,Y,0) to (X,Y,1) and also to offset for Zc=f +# First we note that (X,Y,0) = (X,Y,1) - (0,0,1) +# Thus the equation becomes +# (x,y,f) = M {R [(X,Y,1) - (0,0,1)] - (0,0,Zc)} = MT (X,Y,1) +# But R [(X,Y,1) - (0,0,1)] = R [II (X,Y,1) - S (X,Y,1)] = R (II-S) (X,Y,1), +# where II is the identity matrix and S is an all zero matrix except for S22=1. +# Thus (II-S) is the identity matrix with I22=0 and +# RR = R (II-S) is just R with the third column all zeros. +# Thus we get (x,y,f) = M {RR (X,Y,1) - (0,0,Zc)}. +# But M {RR (X,Y,1) - (0,0,Zc)} = M {RR(X,Y,1) - D (X,Y,1)}, where +# D is an all zero matrix with D22 = Zc = f. +# So that we get M (RR-D) (X,Y,1) = MT (X,Y,1), where +# where T is just R with the third column (0,0,-f), i.e. T02=0, T12=0, T22=-f +# But we need to allow for scaling and offset of the output coordinates and +# conversion from (x,y,f) to (u,v,1)=O and conversion of input coordinates +# from (X,Y,1) to (i,j,1)=I. +# Thus the forward transformation becomes AO=MTBI or O=A'MTBI or O=PI, +# where prime means inverse. +# However, to do the scaling of the output correctly, need to offset by the +# input plus output offsets, then scale, which is all put into A'. +# Thus the forward transformation becomes AO=MTBI or O=A'MTBI where A'=Ai +# but we will merge A'M into Aim +# Thus the inverse transform becomes +# I=QO where Q=P' +# A=output scaling, offset and conversion matrix +# B=input offset and conversion matrix +# (scaling only needs to be done in one place) +# M=camera orientation matrix +# R=image rotation matrix Rroll Rtilt Rpan +# T=matrix that is R but R33 offset by f + 1 +# O=output coords vector (i,j,1) +# I=input coords vector (u,v,1)=(is,il,1) +# P=forward perspective transformation matrix +# Q=inverse perspective transformation matrix +# +# For a 35 mm camera whose film format is 36mm wide +# and 24mm tall, when the focal length +# is equal to the diagonal, the field of view is 53.13 degrees and this is +# considered a normal view equivalent to the human eye. +# See http://www.panoramafactory.com/equiv35/equiv35.html +# Max limit on dfov is 180 degrees (pef=3.19) +# where get single line like looking at picture on edge. +# Above this limit the picture becomes like the angles get reversed. +# Min limit on dfov seems to be slightly greater than zero degrees. +# Practical limits on dfov depend upon orientation angles. +# For tilt=45, this is about 2.5 dfov (pef=2.5). +# Above this, some parts of the picture +# that are cut off at the bottom, get wrapped and stretched in the 'sky'. +#}}} + +dfov = numpy.divide( + numpy.multpily(180, numpy.arctan(36/24)), numpy.pi) +pfact = 1 +if pef == 0: # FIXME + pfact = numpy.divide(0.01, dfov) +else: + pfact = pef + +#compute new field of view based upon pef (pfact) +dfov = numpy.multiply(pfact, dfov) +dfov2 = numpy.divide(dfov, 2) +arg = numpy.multiply(numpy.pi, numpy.divide(dfov, 180)) +sfov = numpy.sin(arg) +cfov = numpy.cos(arg) +tfov = numpy.divide(sfov, cfov) + + +# calculate focal length in same units as wall (picture) using dfov +diag = numpy.sqrt( + numpy.multiply(width, width), numpy.multiply(height, height)) +focal = numpy.divide(diag, numpy.multiply(2, tfov)) + +# calculate forward transform matrix Q + +# define the input offset and conversion matrix +dim = -di +B0 = [1, 0, dim] +B1 = [0, -1, dj] +B2 = [0, 0, 1] + +# define the output scaling, offset and conversion +# matrix inverse Ai and merge with M +# to become Aim +#A0=($sx 0 $sx*(-$du-$di)) +#A1=(0 -$sy $sy*($dv+$dj)) +#A2=(0 0 -$focal) +#M0=(1 0 0) +#M1=(0 1 0) +#M2=(0 0 -1) +aim00 = numpy.divide(1, sx) +aim02 = -numpy.divide( + numpy.multiply(sx, numpy.add(di, du)), numpy.multiply(sx, focal)) +aim11 = numpy.divide(-1, sy) +aim12 = -numpy.divide( + numpy.multiply(sy, numpy.add(dj, dv)), numpy.multiply(sy, focal)) +aim22 = -numpy.divide(1, focal) +Aim0 = [aim00, 0, aim02] +Aim1 = [0, aim11, aim12] +Aim2 = [0, 0, aim22] + +# now do successive matrix multiplies +# from right towards left of main equation P=A'RB + +# convert R to T by setting T02=T12=0 and T22=-f +T0 = [R0[0], R0[1], 0] +T1 = [R1[0], R1[1], 0] +T2 = [R2[0], R2[1], -focal] + +# multiply T x B = P +p_mat = matmul3(T0, T1, T2, B0, B1, B2) + +# multiply Aim x P = P +newmat = matmul3(Aim0, Aim1, Aim2, p_mat[0], p_mat[1], p_mat[2]) + +# # the resulting P matrix is now +# the perspective coefficients for the inverse transformation +# P00= newmat[0][0] +# P01= newmat[0][1] +# P02= newmat[0][2] +# P10= newmat[1][0] +# P11= newmat[1][1] +# P12= newmat[1][2] +# P20= newmat[2][0] +# P21= newmat[2][1] +# P22= newmat[2][2] + +# project input corners to output domain +#echo "UL" +i = 0 +j = 0 +u1, v1 = forwardProject(newmat, i, j) # using Aim matrix and p_mat + +i = maxwidth +j = 0 +u2, v2 = forwardProject(newmat, i, j) # using Aim matrix and p_mat + +i = maxwidth +j = maxheight + +u3, v3 = forwardProject(newmat, i, j) # using Aim matrix and p_mat +i = 0 +j = maxheight + +u4, v4 = forwardProject(newmat, i, j) # using Aim matrix and p_mat + +# deal with adjustments for auto settings +# first get the bounding box dimensions +uArr = [u1, u2, u3, u4] +vArr = [v1, v2, v3, v4] +umin = 1000000 +umax = -1000000 +vmin = 1000000 +vmax = -1000000 +for index in range(0, 4): + if uArr[index] < umin: + umin = uArr[index] + if uArr[index] > umax: + umax = uArr[index] + if vArr[index] < vmin: + vmin = vArr[index] + if vArr[index] > vmax: + vmax = vArr[index] +delu = numpy.add(numpy.subtract(umax, umin), 1) +delv = numpy.add(numpy.subtract(vmax, vmin), 1) +if auto == "c": + offsetu = numpy.divide(numpy.subtract(width, delu), 2) + offsetv = numpy.divide(numpy.subtract(height, delv), 2) + #FIXME may need to cast as int variables below (u1-v4) + u1 = numpy.add(offsetu, numpy.subtract(u1, umin)) + v1 = numpy.add(offsetv, numpy.subtract(v1, vmin)) + u2 = numpy.add(offsetu, numpy.subtract(u2, umin)) + v2 = numpy.add(offsetv, numpy.subtract(v2, vmin)) + u3 = numpy.add(offsetu, numpy.subtract(u3, umin)) + v3 = numpy.add(offsetv, numpy.subtract(v3, vmin)) + u4 = numpy.add(offsetu, numpy.subtract(u4, umin)) + v4 = numpy.add(offsetv, numpy.subtract(v4, vmin)) +elif auto == "zc": + if delu > delv: + _del = delu + offsetu = 0 + offsetv = numpy.divide( + numpy.subtract( + height, numpy.divide(numpy.multpily(delv, width), delu)), 2) + else: + _del = delv + offsetu = numpy.divide( + numpy.subtract( + width, numpy.divide(numpy.multpily(delu, height), delv)), 2) + offsetv = 0 +u1 = numpy.add( + offsetu, + numpy.multpily(numpy.subtract(u1, umin), numpy.divide(width, _del))) +v1 = numpy.add( + offsetv, + numpy.multpily(numpy.subtract(v1, vmin), numpy.divide(height, _del))) +u2 = numpy.add( + offsetu, + numpy.multpily(numpy.subtract(u2, umin), numpy.divide(width, _del))) +v2 = numpy.add( + offsetv, + numpy.multpily(numpy.subtract(v2, vmin), numpy.divide(height, _del))) +u3 = numpy.add( + offsetu, + numpy.multpily(numpy.subtract(u3, umin), numpy.divide(width, _del))) +v3 = numpy.add( + offsetv, + numpy.multpily(numpy.subtract(v3, vmin), numpy.divide(height, _del))) +u4 = numpy.add( + offsetu, + numpy.multpily(numpy.subtract(u4, umin), numpy.divide(width, _del))) +v4 = numpy.add( + offsetv, + numpy.multpily(numpy.subtract(v4, vmin), numpy.divide(height, _del))) +# +# now do the perspective distort +if auto == "out": + distort = "+distort" +else: + distort = "-distort" + +#im_version=`convert -list configure | \ +# sed '/^LIB_VERSION_NUMBER /!d; s//,/; s/,/,0/g; s/,0*\([0-9][0-9]\)/\1/g'\ +# | head -n 1` +#if [ "$im_version" -lt "06030600" ] +# then +# convert $tmpA -virtual-pixel $vp -background $bgcolor \ +# -mattecolor $skycolor $distort Perspective \ +# "0,0 $maxwidth,0 $maxwidth,$maxheight 0,$maxheight \ +# $u1,$v1 $u2,$v2 $u3,$v3 $u4,$v4" $outfile +#else +cmd = [ + "convert", tmpA, "-virtual-pixel", vp, "-background", bgcolor, + "-mattecolor", skycolor, distort, "Perspective", + "0,0", "%s,%s" % (u1, v1), + "%s,0" % (maxwidth), "%s,%s" % (u2, v2), + "%s,%s" % (maxwidth, maxheight), + "%s,%s" % (u3, v3), + "%s,%s" % (0, maxheight), + "%s,%s" % (u4, v4), + outfile +] +call_cmd(cmd) |
