diff options
| author | yo mama <pepper@scannerjammer.com> | 2017-06-24 20:21:21 -0700 |
|---|---|---|
| committer | yo mama <pepper@scannerjammer.com> | 2017-06-24 20:21:21 -0700 |
| commit | 95cf222e29dfce0f2c3e2771912aa007c64cd874 (patch) | |
| tree | 03fbf53c7ee89043de67afeaa6fca1af59c5a073 | |
| parent | bc44ea348c682f7cefcbb5302d1d5f43af80371b (diff) | |
added 3Drotate script
| -rwxr-xr-x | bin/3Drotate | 39 | ||||
| -rwxr-xr-x | bin/3Drotate.py | 696 | ||||
| -rwxr-xr-x | bin/grid | 9 | ||||
| -rw-r--r-- | share/frontend/imconcat/index.html | 9 |
4 files changed, 707 insertions, 46 deletions
diff --git a/bin/3Drotate b/bin/3Drotate index 227b92d..55b50e6 100755 --- a/bin/3Drotate +++ b/bin/3Drotate @@ -757,45 +757,6 @@ v4=$vv #u5=$uu #v5=$vv -# unused -: ' -# Now invert P to get Q for the inverse perspective transformation -# Use the Method of the Adjoint Matrix = transpose of matrix of cofactors divided by the determinant -# M3inverse $P00 $P01 $P02 $P10 $P11 $P12 $P20 $P21 $P22 -# -# project output corners to input domain -# UL -#echo "UL 0,0" -#u=$u1 -#v=$v1 -#echo "u,v=$u,$v" -#inverseProject $u $v -#echo "i,j=$ii,$jj" -#echo "UR 255,0" -#u=$u2 -#v=$v2 -#echo "u,v=$u,$v" -#inverseProject $u $v -#echo "i,j=$ii,$jj" -#echo "BR 255,255" -#u=$u3 -#v=$v3 -#echo "u,v=$u,$v" -#inverseProject $u $v -#echo "i,j=$ii,$jj" -#echo "BL 0,255" -#u=$u4 -#v=$v4 -#echo "u,v=$u,$v" -#inverseProject $u $v -#echo "i,j=$ii,$jj" -#echo "C 127.5,127.5" -#u=$u5 -#v=$v5 -#echo "u,v=$u,$v" -#inverseProject $u $v -#echo "i,j=$ii,$jj" -' # deal with adjustments for auto settings # first get the bounding box dimensions diff --git a/bin/3Drotate.py b/bin/3Drotate.py new file mode 100755 index 0000000..63281b7 --- /dev/null +++ b/bin/3Drotate.py @@ -0,0 +1,696 @@ +#!/usr/bin/python2.7 +import getopt +import numpy +import sys +from subprocess import Popen, PIPE + +#{{{ usage +USAGE=""" +USAGE: 3Drotate option=value infile outfile +USAGE: 3Drotate [-h or -help] + +OPTIONS: any one or more + +pan value rotation about image vertical centerline; + -180 to +180 (deg); default=0 +tilt value rotation about image horizontal centerline; + -180 to +180 (deg); default=0 +roll value rotation about the image center; + -180 to +180 (deg); default=0 +pef value perspective exaggeration factor; + 0 to 3.19; default=1 +idx value +/- pixel displacement in rotation point right/left + in input from center; default=0 +idy value +/- pixel displacement in rotation point down/up + in input from center; default=0 +odx value +/- pixel displacement in rotation point right/left + in output from center; default=0 +ody value +/- pixel displacement in rotation point down/up + in output from center; default=0 +zoom value output zoom factor; where value > 1 means zoom in + and < -1 means zoom out; value=1 means no change +bgcolor value the background color value; any valid IM image + color specification (see -fill); default is black +skycolor value the sky color value; any valid IM image + color specification (see -fill); default is black +auto c center bounding box in output + (odx and ody ignored) +auto zc zoom to fill and center bounding box in output + (odx, ody and zoom ignored) +auto out creates an output image of size needed to hold + the transformed image; (odx, ody and zoom ignored) +vp value virtual-pixel method; any valid IM virtual-pixel method; + default=background + +# + +NAME: 3DROTATE + +PURPOSE: To apply a perspective distortion to an image by providing rotation angles, +zoom, offsets, background color, perspective exaggeration and auto zoom/centering. + +DESCRIPTION: 3DROTATE applies a perspective distortion to an image +by providing any combination of three optional rotation angle: +pan, tilt and roll with optional offsets and zoom and with an optional +control of the perspective exaggeration. The image is treated as if it +were painted on the Z=0 ground plane. The picture plane is then rotated +and then perspectively projected to a camera located a distance equal to +the focal length above the ground plane looking straight down along +the -Z direction. + + +ARGUMENTS: + +PAN is a rotation of the image about its vertical +centerline -180 to +180 degrees. Positive rotations turn the +right side of the image away from the viewer and the left side +towards the viewer. Zero is no rotation. A PAN of +/- 180 deg +achieves the same results as -flip. + +TILT is a rotation of the image about its horizontal +centerline -180 to +180 degrees. Positive rotations turn the top +of the image away from the viewer and the bottom towards the +viewer. Zero is no rotation. A TILT of +/- 180 deg +achieves the same results as -flop. + +ROLL (like image rotation) is a rotation in the plane of the +the image -180 to +180 degrees. Positive values are clockwise +and negative values are counter-clockwise. Zero is no rotation. +A ROLL of any angle achieves the same results as -rotate. + +PAN, TILT and ROLL are order dependent. If all three are provided, +then they will be done in whatever order specified. + +PEF is the perspective exaggeration factor. It ranges from 0 to 3.19. +A normal perspective is achieved with the default of 1. As PEF is +increased from 1, the perspective effect moves towards that of +a wide angle lens (more distortion). If PEF is decreased from 1 +the perspective effect moves towards a telephoto lens (less +distortion). PEF of 0.5 achieves an effect close to no perspective +distortion. As pef gets gets larger than some value which depends +upon the larger the pan, tilt and roll angles become, one reaches +a point where some parts of the picture become so distorted that +they wrap around and appear above the "horizon" + +IDX is the a pixel displacement of the rotation point in the input image +from the image center. Positive values shift to the right along the +sample direction; negative values shift to the left. The default=0 +corresponds to the image center. + +IDY is the a pixel displacement of the rotation point in the input image +from the image center. Positive values shift to downward along the +line direction; negative values shift upward. The default=0 +corresponds to the image center. + +ODX is the a pixel displacement from the center of the output image where +one wants the corresponding input image rotation point to appear. +Positive values shift to the right along the sample direction; negative +values shift to the left. The default=0 corresponds to the output image center. + +ODY is the a pixel displacement from the center of the output image where +one wants the corresponding input image rotation point to appear. +Positive values shift downward along the sample direction; negative +values shift upward. The default=0 corresponds to the output image center. + +ZOOM is the output image zoom factor. Values > 1 (zoomin) cause the image +to appear closer; whereas values < 1 (zoomout) cause the image to +appear further away. + +BGCOLOR is the color of the background to use to fill where the output image +is outside the area of the perspective of the input image. See the IM function +-fill for color specifications. Note that when using rgb(r,g,b), this must be +enclosed in quotes after the equal sign. + +SKYCOLOR is the color to use in the 'sky' area above the perspective 'horizon'. +See the IM function -fill for color specifications. Note that when using +rgb(r,g,b), this must be enclosed in quotes after the equal sign. + +AUTO can be either c, zc or out. If auto is c, then the resulting perspective +of the input image will have its bounding box centered in the output image +whose size will be the same as the input image. If +auto is zc, then the resulting perspective of the input image will have its +bounding box zoomed to fill its largest dimension to match the size of the +the input image and the other dimension will be centered in the output. If +auto is out, then the output image will be made as large or as small as +needed to just fill out the transformed input image. If any of these are +present, then the arguments OSHIFTX, OSHIFTY are ignored. + +VP is the virtual-pixel method, which allows the image to be extended outside +its bounds. For example, vp=background, then the background color is used to +fill the area in the output image which is outside the perspective view of +the input image. If vp=tile, then the perspective view will be tiled to fill +the output image. + +NOTE: The output image size will be the same as the input image size due +to current limitations on -distort Perspective. + +CAVEAT: No guarantee that this script will work on all platforms, +nor that trapping of inconsistent parameters is complete and +foolproof. Use At Your Own Risk. +""" + +#}}} + +#{{{ defaults +# set default value +# rotation angles and rotation matrix +pan = 0 +tilt = 0 +roll = 0 +R0 = [1, 0, 0] +R1 = [0, 1, 0] +R2 = [0, 0, 1] + +# scaling output only +sx = 1 +sy = 1 + +# offset du,dv = output; relative to center of image +du = 0 +dv = 0 + +# offset di,dj = input; relative to center of image +di = 0 +dj = 0 + +# perspective exaggeration factor +pef = 1 +# zoom +zoom = 1 +# background color +bgcolor = "black" +# sky color +skycolor = "black" + +# virtual-pixel method +vp = "background" + +# set directory for temporary files +dir = "." # suggestions are dir="." or dir="/tmp" + +pi = numpy.math.pi +#}}} + +# function to do dot product of 2 three element vectors +def dot(vec1, vec2): + return numpy.dot(vec1, vec2) + +# function to do 3x3 matrix multiply M x N where input are rows of each matrix; M1 M2 M3 N1 N2 N3 +def matmul3(m0, m1, m2, n0, n1, n2): + return numpy.matmul( + [m0, m1, m2], [n0, n1, n2] + ) + +# function to project points from input to output domain +def forwardProjrect(mat, ii, jj): + #takes in a 3x3 matrix and scalars ii and jj + #returns two scalars, uu and vv + numu = mat[0][0] * ii + mat[0][1] * jj + mat[0][2] + numv = mat[1][0] * ii + mat[1][1] * jj + mat[1][2] + den = mat[2][0] * ii + mat[2][1] * jj + mat[2][2] + uu = numu / den + vv = numv / den + return [uu, vv] + +def errMsg(s): + sys.stderr.write("%s\n") + sys.exit(1) + +def inverseProject(mat, uu, vv): + #note this function is more exact in python version + numi = (mat[0][0] * uu) + (mat[0][1] * vv) + mat[0][2] + numj = (mat[1][0] * uu) + (mat[1][1] * vv) + mat[1][2] + den = (mat[2][0] * uu) + (mat[2][1] * vv) + mat[2][2] + ii = numi / den + jj = numj / den + #FIXME chop off decimal for it to be like bash version + return [ii, jj] + +# function to invert a 3 x 3 matrix using method of adjoint +# inverse is the transpose of the matrix of cofactors divided by the determinant +def M3inverse(mat): + return numpy.linalg.inv(mat) + +def call_cmd(s): + cmd = s.split(" ") + ps = Popen(cmd, stdout=PIPE, stderr=PIPE) + out, err = process.communicate() + errcode = process.returncode + if errcode > 0: + errMsg(err) + return out + +# +# get input image size +def imagesize(filepath): + width = int(call_cmd("identify -format %w %s" % (filepath))) + height = int(call_cmd("identify -format %h %s" % (filepath))) + return width, height + +# test for correct number of arguments and get values +len_args = len(sys.argv) +if len_args == 1: + usage2() + sys.exit(1) +elif (len_args > 15): + errMsg("--- TOO MANY ARGUMENTS WERE PROVIDED ---") +else: + for arg in sys.argv: + if arg == "-h": + usage2() + sys.exit(1) + if arg == "-": + break #fixme + test = re.match(r'pan=(\d+\.\d+)', arg) + if test: + pan = float(test.group(1)) + if (pan > 180) or (pan < -180): + errMsg("PAN=%s MUST BE GREATER THAN -180 AND LESS THAN +180" + ) % pan + sys.exit(1) + panang = numpy.multiply(numpy.pi, numpy.divide(pan, 180)) + sinpan = numpy.sin(panang) + cospan = numpy.cos(panang) + Rp0 = [cospan, 0, sinpan] + Rp1 = [0, 1, 0] + Rp2 = [-sinpan, 0, cospan] + # do matrix multiply to get new rotation matrix + newmat = matmul3(Rp0, Rp1, Rp2, R0, R1, R2) + #RESETS CONSTANTS HERE, the GLOBAL ROTATION MATRIX + R0=newmat[0] + R1=newmat[1] + R2=newmat[2] + test = re.match(r'tilt=(\d+\.\d+)', arg) # tilt angle + if test: + tilt = float(test.group(1)) + if not (tilt > -180) or not (tilt < 180): + errMsg("TILT=%s MUST BE LESS THAN 180 AND GREATER THAN -180" + ) % tilt + sys.exit(1) + tiltang = numpy.multiply(numpy.py, numpy.divide(tilt, 180)) + sintilt = numpy.sin(tiltang) + costilt = numpy.cos(tiltang) + Rt0 = [1, 0, 0] + Rt1 = [0, costilt, sintilt] + Rt2 = [0, sintiltm, costilt] + # do matrix multiply to get new rotation matrix + newmat = matmul3(Rt0, Rt1, Rt2, R0, R1, R2) + #again resets the matrix ... hmm + R0 = newmat[0] + R1 = newmat[1] + R2 = newmat[2] + roll[=]*) # roll angle + arg="$1=" + roll=`echo "$arg" | cut -d= -f2` + # function bc does not seem to like numbers starting with + sign, so strip off + roll=`echo "$roll" | sed 's/^[+]\(.*\)$/\1/'` + # rolltest>0 if floating point number; otherwise rolltest=0 + testFloat "$roll"; rolltest=$floatresult + rolltestA=`echo "$roll < - 180" | bc` + rolltestB=`echo "$roll > 180" | bc` + [ $rolltest -eq 0 ] && errMsg "roll=$roll IS NOT A NUMBER" + [ $rolltestA -eq 1 -o $rolltestB -eq 1 ] && errMsg "ROLL=$roll MUST BE GREATER THAN -180 AND LESS THAN +180" + rollang=`echo "scale=10; $pi * $roll / 180" | bc` + sinroll=`echo "scale=10; s($rollang)" | bc -l` + sinrollm=`echo "scale=10; - $sinroll" | bc` + cosroll=`echo "scale=10; c($rollang)" | bc -l` + Rr0=($cosroll $sinroll 0) + Rr1=($sinrollm $cosroll 0) + Rr2=(0 0 1) + # do matrix multiply to get new rotation matrix + matmul3 "${Rr0[*]}" "${Rr1[*]}" "${Rr2[*]}" "${R0[*]}" "${R1[*]}" "${R2[*]}" + R0=(${P0[*]}) + R1=(${P1[*]}) + R2=(${P2[*]}) + ;; + pef[=]*) # pef + arg="$1=" + pef=`echo "$arg" | cut -d= -f2` + # function bc does not seem to like numbers starting with + sign, so strip off + pef=`echo "$pef" | sed 's/^[+]\(.*\)$/\1/'` + # peftest>0 if floating point number; otherwise peftest=0 + testFloat "$pef"; peftest=$floatresult + peftestA=`echo "$pef < 0" | bc` + peftestB=`echo "$pef > 3.19" | bc` + [ $peftest -eq 0 ] && errMsg "PEF=$pef IS NOT A NUMBER" + ;; + idx[=]*) # input x shift + arg="$1=" + di=`echo "$arg" | cut -d= -f2` + # function bc does not seem to like numbers starting with + sign, so strip off + di=`echo "$di" | sed 's/^[+]\(.*\)$/\1/'` + # ditest>0 if floating point number; otherwise ditest=0 + testFloat "$di"; ditest=$floatresult + [ $ditest -eq 0 ] && errMsg "ISHIFTX=$di IS NOT A NUMBER" + ;; + idy[=]*) # input y shift + arg="$1=" + dj=`echo "$arg" | cut -d= -f2` + # function bc does not seem to like numbers starting with + sign, so strip off + dj=`echo "$dj" | sed 's/^[+]\(.*\)$/\1/'` + # djtest>0 if floating point number; otherwise ditest=0 + testFloat "$dj"; djtest=$floatresult + [ $djtest -eq 0 ] && errMsg "ISHIFTY=$dj IS NOT A NUMBER" + ;; + odx[=]*) # output x shift + arg="$1=" + du=`echo "$arg" | cut -d= -f2` + # function bc does not seem to like numbers starting with + sign, so strip off + du=`echo "$du" | sed 's/^[+]\(.*\)$/\1/'` + # dutest>0 if floating point number; otherwise ditest=0 + testFloat "$du"; dutest=$floatresult + [ $dutest -eq 0 ] && errMsg "OSHIFTX=$du IS NOT A NUMBER" + ;; + ody[=]*) # output y shift + arg="$1=" + dv=`echo "$arg" | cut -d= -f2` + # function bc does not seem to like numbers starting with + sign, so strip off + dv=`echo "$dv" | sed 's/^[+]\(.*\)$/\1/'` + # dvtest>0 if floating point number; otherwise ditest=0 + testFloat "$dv"; dvtest=$floatresult + [ $dvtest -eq 0 ] && errMsg "OSHIFTY=$dv IS NOT A NUMBER" + ;; + zoom[=]*) # output zoom + arg="$1=" + zoom=`echo "$arg" | cut -d= -f2` + # function bc does not seem to like numbers starting with + sign, so strip off + zoom=`echo "$zoom" | sed 's/^[+]\(.*\)$/\1/'` + # zoomtest>0 if floating point number; otherwise peftest=0 + testFloat "$zoom"; zoomtest=$floatresult + zoomtest=`echo "$zoom < 1 && $zoom > -1" | bc` + [ $zoomtest -eq 1 ] && errMsg "ZOOM=$zoom MUST BE GREATER THAN 1 OR LESS THAN -1" + ;; + bgcolor[=]*) # output background color + arg="$1=" + bgcolor=`echo "$arg" | cut -d= -f2` + ;; + skycolor[=]*) # output sky color + arg="$1=" + skycolor=`echo "$arg" | cut -d= -f2` + ;; + vp[=]*) # virtual pixel method + arg="$1=" + vp=`echo "$arg" | cut -d= -f2` + [ "$vp" != "background" -a "$vp" != "dither" -a "$vp" != "edge" -a "$vp" != "mirror" -a "$vp" != "random" -a "$vp" != "tile" -a "$vp" != "transparent" ] && errMsg "VP=$vp IS NOT A VALID VALUE" + ;; + auto[=]*) # output background color + arg="$1=" + auto=`echo "$arg" | cut -d= -f2` + [ "$auto" != "c" -a "$auto" != "zc" -a "$auto" != "out" ] && errMsg "AUTO=$auto IS NOT A VALID VALUE" + ;; + *[=]*) # not valid + errMsg "$1 IS NOT A VALID ARGUMENT" + ;; + *) # end of arguments + break + ;; + esac + shift # next option + done + # + # get infile and outfile + infile=$1 + outfile=$2 +fi + +# setup temporary images and auto delete upon exit +# use mpc/cache to hold input image temporarily in memory +pid = os.getpid() + +tmpA = "%s/3Drotate_%s.mpc" % (directory, pid) +tmpB = "%s/3Drotate_%s.cache" % (directory, pid) +os.unlink(tmpA,tmpB) +os.unlink(tmpA,tmpB) + +# test that infile provided +[ "$infile" = "" ] && errMsg "NO INPUT FILE SPECIFIED" +# test that outfile provided +[ "$outfile" = "" ] && errMsg "NO OUTPUT FILE SPECIFIED" + +if convert -quiet -regard-warnings "$infile" +repage "$tmpA" + then + [ "$pef" = "" ] && pef=1 +else + errMsg "--- FILE $infile DOES NOT EXIST OR IS NOT AN ORDINARY FILE, NOT READABLE OR HAS ZERO SIZE ---" +fi + +# get input image width and height +imagesize +maxwidth=`expr $width - 1` +maxheight=`expr $height - 1` + +# deal with auto adjustments to values +if [ "$auto" = "zc" ] + then + du=0 + dv=0 + zoom=1 +elif [ "$...auto" = "c" ] + then + du=0 + dv=0 +fi + +# convert offsets of rotation point to relative to pixel 0,0 +di=`echo "scale=10; ($di + (($width - 1) / 2)) / 1" | bc` +dj=`echo "scale=10; ($dj + (($height - 1) / 2)) / 1" | bc` +du=`echo "scale=10; $du / 1" | bc` +dv=`echo "scale=10; $dv / 1" | bc` + +# convert zoom to scale factors +if [ `echo "$zoom >= 1" | bc` -eq 1 ] + then + sx=`echo "scale=10; 1 / $zoom" | bc` + sy=$sx +elif [ `echo "$zoom <= -1" | bc` -eq 1 ] + then + sx=`echo "scale=10; - $zoom / 1" | bc` + sy=$sx +fi + +#{{{explanation +# Consider the picture placed on the Z=0 plane and the camera a distance +# Zc=f above the picture plane looking straight down at the image center. +# Now the perspective equations (in 3-D) are defined as (x,y,f) = M (X',Y',Z'), +# where the camera orientation matrix M is the identity matrix but with M22=-1 +# because the camera is looking straight down along -Z. +# Thus a reflection transformation relative to the ground plane coordinates. +# Let the camera position Zc=f=(sqrt(ins*ins + inl*inl)) / ( 2 tan(fov/2) ) +# Now we want to rotate the ground points corresponding to the picture corners. +# The basic rotation is (X',Y',Z') = R (X,Y,0), where R is the rotation matrix +# involving pan, tilt and roll. +# But we need to convert (X,Y,0) to (X,Y,1) and also to offset for Zc=f +# First we note that (X,Y,0) = (X,Y,1) - (0,0,1) +# Thus the equation becomes (x,y,f) = M {R [(X,Y,1) - (0,0,1)] - (0,0,Zc)} = MT (X,Y,1) +# But R [(X,Y,1) - (0,0,1)] = R [II (X,Y,1) - S (X,Y,1)] = R (II-S) (X,Y,1), where +# II is the identity matrix and S is an all zero matrix except for S22=1. +# Thus (II-S) is the identity matrix with I22=0 and +# RR = R (II-S) is just R with the third column all zeros. +# Thus we get (x,y,f) = M {RR (X,Y,1) - (0,0,Zc)}. +# But M {RR (X,Y,1) - (0,0,Zc)} = M {RR(X,Y,1) - D (X,Y,1)}, where +# D is an all zero matrix with D22 = Zc = f. +# So that we get M (RR-D) (X,Y,1) = MT (X,Y,1), where +# where T is just R with the third column (0,0,-f), i.e. T02=0, T12=0, T22=-f +# But we need to allow for scaling and offset of the output coordinates and +# conversion from (x,y,f) to (u,v,1)=O and conversion of input coordinates +# from (X,Y,1) to (i,j,1)=I. +# Thus the forward transformation becomes AO=MTBI or O=A'MTBI or O=PI, +# where prime means inverse. +# However, to do the scaling of the output correctly, need to offset by the input +# plus output offsets, then scale, which is all put into A'. +# Thus the forward transformation becomes AO=MTBI or O=A'MTBI where A'=Ai +# but we will merge A'M into Aim +# Thus the inverse transform becomes +# I=QO where Q=P' +# A=output scaling, offset and conversion matrix +# B=input offset and conversion matrix (scaling only needs to be done in one place) +# M=camera orientation matrix +# R=image rotation matrix Rroll Rtilt Rpan +# T=matrix that is R but R33 offset by f + 1 +# O=output coords vector (i,j,1) +# I=input coords vector (u,v,1)=(is,il,1) +# P=forward perspective transformation matrix +# Q=inverse perspective transformation matrix +# +# For a 35 mm camera whose film format is 36mm wide and 24mm tall, when the focal length +# is equal to the diagonal, the field of view is 53.13 degrees and this is +# considered a normal view equivalent to the human eye. +# See http://www.panoramafactory.com/equiv35/equiv35.html +# Max limit on dfov is 180 degrees (pef=3.19) where get single line like looking at picture on edge. +# Above this limit the picture becomes like the angles get reversed. +# Min limit on dfov seems to be slightly greater than zero degrees. +# Practical limits on dfov depend upon orientation angles. +# For tilt=45, this is about 2.5 dfov (pef=2.5). Above this, some parts of the picture +# that are cut off at the bottom, get wrapped and stretched in the 'sky'. +#}}} + +dfov=`echo "scale=10; 180 * a(36/24) / $pi" | bc -l` +if [ "$pef" = "" ] + then + pfact=1 +elif [ "$pef" = "0" ] + then + pfact=`echo "scale=10; 0.01 / $dfov" | bc` +else + pfact=$pef +fi +#maxpef=`echo "scale=5; 180 / $dfov" | bc` +#echo "maxpef=$maxpef" + +#compute new field of view based upon pef (pfact) +dfov=`echo "scale=10; $pfact * $dfov" | bc` +dfov2=`echo "scale=10; $dfov / 2" | bc` +arg=`echo "scale=10; $pi * $dfov2 / 180" | bc` +sfov=`echo "scale=10; s($arg)" | bc -l` +cfov=`echo "scale=10; c($arg)" | bc -l` +tfov=`echo "scale=10; $sfov / $cfov" | bc -l` +#echo "tfov=$tfov" + +# calculate focal length in same units as wall (picture) using dfov +diag=`echo "scale=10; sqrt(($width * $width) + ($height * $height))" | bc` +focal=`echo "scale=10; ($diag / (2 * $tfov))" | bc -l` +#echo "focal=$focal" + +# calculate forward transform matrix Q + +# define the input offset and conversion matrix +dim=`echo "scale=10; - $di" | bc` +B0=(1 0 $dim) +B1=(0 -1 $dj) +B2=(0 0 1) + +# define the output scaling, offset and conversion matrix inverse Ai and merge with M +# to become Aim +#A0=($sx 0 $sx*(-$du-$di)) +#A1=(0 -$sy $sy*($dv+$dj)) +#A2=(0 0 -$focal) +#M0=(1 0 0) +#M1=(0 1 0) +#M2=(0 0 -1) +aim00=`echo "scale=10; 1 / $sx" | bc` +aim02=`echo "scale=10; -($sx * ($di + $du)) / ($sx * $focal)" | bc` +aim11=`echo "scale=10; -1 / $sy" | bc` +aim12=`echo "scale=10; -($sy * ($dj + $dv)) / ($sy * $focal)" | bc` +aim22=`echo "scale=10; -1 / $focal" | bc` +Aim0=($aim00 0 $aim02) +Aim1=(0 $aim11 $aim12) +Aim2=(0 0 $aim22) + +# now do successive matrix multiplies from right towards left of main equation P=A'RB + +# convert R to T by setting T02=T12=0 and T22=-f +focalm=`echo "scale=10; - $focal" | bc` +T0=(${R0[0]} ${R0[1]} 0) +T1=(${R1[0]} ${R1[1]} 0) +T2=(${R2[0]} ${R2[1]} $focalm) + +# multiply T x B = P +p_mat = matmul3("${T0[*]}","${T1[*]}","${T2[*]}","${B0[*]}","${B1[*]}","${B2[*]}") + +# multiply Aim x P = P +newmat = matmul3("${Aim0[*]}","${Aim1[*]}","${Aim2[*]}",p_mat[0],p_mat[1],p_mat[2]) + +# the resulting P matrix is now the perspective coefficients for the inverse transformation +P00= newmat[0][0] +P01= newmat[0][1] +P02= newmat[0][2] +P10= newmat[1][0] +P11= newmat[1][1] +P12= newmat[1][2] +P20= newmat[2][0] +P21= newmat[2][1] +P22= newmat[2][2] + +# project input corners to output domain +#echo "UL" +i=0 +j=0 +u1, v1 = forwardProject(newmat, i, j) #using Aim matrix and p_mat + +i=maxwidth +j=0 +u2, v2 = forwardProject(newmat, i, j) #using Aim matrix and p_mat + +i=maxwidth +j=maxheight + +u3, v3 = forwardProject(newmat, i, j) #using Aim matrix and p_mat +i=0 +j=maxheight + +u4, v4 = forwardProject(newmat, i, j) #using Aim matrix and p_mat + +# deal with adjustments for auto settings +# first get the bounding box dimensions +uArr=($u1 $u2 $u3 $u4) +vArr=($v1 $v2 $v3 $v4) +index=0 +umin=1000000 +umax=-1000000 +vmin=1000000 +vmax=-1000000 +while [ $index -lt 4 ] + do + [ `echo "${uArr[$index]} < $umin" | bc` -eq 1 ] && umin=${uArr[$index]} + [ `echo "${uArr[$index]} > $umax" | bc` -eq 1 ] && umax=${uArr[$index]} + [ `echo "${vArr[$index]} < $vmin" | bc` -eq 1 ] && vmin=${vArr[$index]} + [ `echo "${vArr[$index]} > $vmax" | bc` -eq 1 ] && vmax=${vArr[$index]} + index=`expr $index + 1` +done +delu=`echo "scale=10; $umax - $umin + 1" | bc` +delv=`echo "scale=10; $vmax - $vmin + 1" | bc` +if [ "$auto" = "c" ] + then + offsetu=`echo "scale=10; ($width - $delu) / 2" | bc` + offsetv=`echo "scale=10; ($height - $delv) / 2" | bc` + u1=`echo "scale=0; $offsetu + ($u1 - $umin)" | bc` + v1=`echo "scale=0; $offsetv + ($v1 - $vmin)" | bc` + u2=`echo "scale=0; $offsetu + ($u2 - $umin)" | bc` + v2=`echo "scale=0; $offsetv + ($v2 - $vmin)" | bc` + u3=`echo "scale=0; $offsetu + ($u3 - $umin)" | bc` + v3=`echo "scale=0; $offsetv + ($v3 - $vmin)" | bc` + u4=`echo "scale=0; $offsetu + ($u4 - $umin)" | bc` + v4=`echo "scale=0; $offsetv + ($v4 - $vmin)" | bc` +elif [ "$auto" = "zc" ] + then + if [ `echo "$delu > $delv" | bc` -eq 1 ] + then + del=$delu + offsetu=0 + offsetv=`echo "scale=10; ($height - ($delv * $width / $delu)) / 2" | bc` + else + del=$delv + offsetu=`echo "scale=10; ($width - ($delu * $height / $delv)) / 2" | bc` + offsetv=0 + fi + u1=`echo "scale=0; $offsetu + (($u1 - $umin) * $width / $del)" | bc` + v1=`echo "scale=0; $offsetv + (($v1 - $vmin) * $height / $del)" | bc` + u2=`echo "scale=0; $offsetu + (($u2 - $umin) * $width / $del)" | bc` + v2=`echo "scale=0; $offsetv + (($v2 - $vmin) * $height / $del)" | bc` + u3=`echo "scale=0; $offsetu + (($u3 - $umin) * $width / $del)" | bc` + v3=`echo "scale=0; $offsetv + (($v3 - $vmin) * $height / $del)" | bc` + u4=`echo "scale=0; $offsetu + (($u4 - $umin) * $width / $del)" | bc` + v4=`echo "scale=0; $offsetv + (($v4 - $vmin) * $height / $del)" | bc` +fi +# +# now do the perspective distort +if [ "$auto" = "out" ] + then + distort="+distort" +else + distort="-distort" +fi + +im_version=`convert -list configure | \ + sed '/^LIB_VERSION_NUMBER /!d; s//,/; s/,/,0/g; s/,0*\([0-9][0-9]\)/\1/g' | head -n 1` +if [ "$im_version" -lt "06030600" ] + then + convert $tmpA -virtual-pixel $vp -background $bgcolor \ + -mattecolor $skycolor $distort Perspective \ + "0,0 $maxwidth,0 $maxwidth,$maxheight 0,$maxheight $u1,$v1 $u2,$v2 $u3,$v3 $u4,$v4" $outfile +else + convert $tmpA -virtual-pixel $vp -background $bgcolor \ + -mattecolor $skycolor $distort Perspective \ + "0,0 $u1,$v1 $maxwidth,0 $u2,$v2 $maxwidth,$maxheight $u3,$v3 0,$maxheight $u4,$v4" $outfile +fi +exit 0 @@ -186,13 +186,14 @@ fi # use mpc/cache to hold input image temporarily in memory tmpA="$dir/profile_$$.mpc" tmpB="$dir/profile_$$.cache" -trap "rm -f $tmpA $tmpB; exit 0" 0 -trap "rm -f $tmpA $tmpB; exit 1" 1 2 3 15 +#trap "rm -f $tmpA $tmpB; exit 0" 0 +#trap "rm -f $tmpA $tmpB; exit 1" 1 2 3 15 # -if convert -quiet -regard-warnings "$infile" +repage "$tmpA" - then +convert "$infile" +repage "$tmpA" +if [ $? -eq 0 ]; + then : 'do nothing - continue processing below' else errMsg "--- FILE $infile DOES NOT EXIST OR IS NOT AN ORDINARY FILE, NOT READABLE OR HAS ZERO SIZE ---" diff --git a/share/frontend/imconcat/index.html b/share/frontend/imconcat/index.html index 78f43ea..909d2e0 100644 --- a/share/frontend/imconcat/index.html +++ b/share/frontend/imconcat/index.html @@ -3,9 +3,12 @@ <head> <meta charset="utf-8" /> <title>Photoblaster Concatenate</title> - <link rel="stylesheet" href="http://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css"> - <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.0/jquery.min.js"></script> - <script src="http://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script> +<!-- <link rel="stylesheet" href="http://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css">--> + <link rel="stylesheet" href="css/bootstrap.css"> +<!-- <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.0/jquery.min.js"></script>--> +<script src="/js/jquery-1.11.0.min.js"></script> +<script src="/js/bootstrap.min.js"></script> +<!-- <script src="http://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script> --> <style type="text/css"> body{ line-height: 2em; |
