summaryrefslogtreecommitdiff
path: root/neural_style.py
diff options
context:
space:
mode:
Diffstat (limited to 'neural_style.py')
-rw-r--r--neural_style.py11
1 files changed, 6 insertions, 5 deletions
diff --git a/neural_style.py b/neural_style.py
index 738c114..797ffa5 100644
--- a/neural_style.py
+++ b/neural_style.py
@@ -42,7 +42,7 @@ def parse_args():
help='Directory path to the style images. (default: %(default)s)')
parser.add_argument('--content_img_dir', type=str,
- default='./content',
+ default='./image_input',
help='Directory path to the content image. (default: %(default)s)')
parser.add_argument('--init_img_type', type=str,
@@ -124,7 +124,7 @@ def parse_args():
choices=['/gpu:0', '/cpu:0'],
help='GPU or CPU mode. GPU mode requires NVIDIA CUDA. (default|recommended: %(default)s)')
- parser.add_argument('--image_output_dir', type=str,
+ parser.add_argument('--img_output_dir', type=str,
default='./image_output',
help='Relative or absolute directory path to output image and data.')
@@ -196,7 +196,7 @@ def parse_args():
if args.video:
maybe_make_directory(args.video_output_dir)
else:
- maybe_make_directory(args.image_output_dir)
+ maybe_make_directory(args.img_output_dir)
return args
@@ -591,12 +591,13 @@ def minimize_with_adam(sess, net, optimizer, init_img):
iterations += 1
def get_optimizer(loss):
+ v = 1 if args.verbose else 0
if args.optimizer == 'lbfgs':
optimizer = tf.contrib.opt.ScipyOptimizerInterface(
loss,
method='L-BFGS-B',
options={'maxiter': args.max_iterations
- 'disp': args.verbose})
+ 'disp': v})
elif args.optimizer == 'adam':
optimizer = tf.train.AdamOptimizer(args.learning_rate)
return optimizer
@@ -607,7 +608,7 @@ def write_video_output(frame, output_img):
write_image(output_frame_path, output_img)
def write_image_output(output_img, content_img, style_imgs, init_img):
- out_dir = os.path.join(args.image_output_dir, args.img_name)
+ out_dir = os.path.join(args.img_output_dir, args.img_name)
maybe_make_directory(out_dir)
img_path = os.path.join(out_dir, "output.png")
content_path = os.path.join(out_dir, "content.png")